Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)
Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)
t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)
(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))
Dùng đường tròn để tìm quãng đường và thời gian đi
4 -4 2 3 2 3 - M N a π/6 π/6 H K
Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)
Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)
Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)
Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)
Chọn đáp án. D
Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?
a) \(v_{max}=\omega.A\Rightarrow \omega=\dfrac{10\pi}{5}=2\pi(rad/s)\)
Vậy PT dao động là: \(x=5\cos(2\pi t+\dfrac{\pi}{3})cm\)
b) Áp dụng CT độc lập:
\(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow 5^2=3^2+\dfrac{v^2}{(2\pi)^2}\)
\(\Rightarrow v=\pm 8\pi(cm/s)\)
4 x O -4 M0 M1 M2 -2
Chu kì dao động: T = 2π/(2π/3) = 3s
Véc tơ quay biểu diễn dao động trên xuất phát từ M0 và quay ngược chiều kim đồng hồ.
Cứ mỗi lần véc tơ quay đi qua M1 và M2 thì dao động điều hòa của chất điểm lại qua vị trí -2cm.
+ Véc tơ quay quay được 1005 vòng thì chất điểm qua -2cm số lần là: 1005 x 2 = 2010 lần.
+ Lần cuối cùng chất điểm qua -2cm ứng với véc tơ quay từ M0 đến M1, với góc quay: 90 + 30 = 1200
Vậy thời điểm chất điểm qua li độ -2cm lần 2011 là: 1005T + 120/360 T = (1005+1/3)T = (1005 + 1/3). 3 = 3016 s
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)