Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=2\pi/T=\pi(rad/s)\)
Giả sử PT dao động là: \(x=A\cos(\pi t)(cm)\)
Suy ra: \(v=-\pi.A\sin(\pi t)\)
Tại thời điểm t ta có: \(A\cos(\pi t)=2\)
Tại thời điểm t + 0,5s thì vận tốc là:
\(v=-\pi.A\sin[\pi(t+0,5)]=-\pi.A\sin(\pi t +0,5\pi)\)
\(\Rightarrow v = -\pi.A\cos(\pi t)=-\pi.2=-2\pi(cm/s)\)
Chọn đáp án D.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Gọi phương trình dao động là: \(x=A\cos\omega t\)
PT vận tốc là: \(v=x'=-\omega A\sin\omega t\)
Ta có: \(A\cos\omega t_0=2\)
Cần tìm:
\(v=-\omega A\sin\omega (t_0+0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{2\pi}{2}.0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{\pi}{2})\)
\(=-\dfrac{2\pi}{2} A\cos\omega t_0\)
\(=-\dfrac{2\pi}{2}.2=-2\pi(cm/s)\)
Chọn D
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Combo 3 câu :)
4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)
\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)
\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)
\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)
\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)
5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)
6/ Áp dụng công thức ở câu 5
a) \(v_{max}=\omega.A\Rightarrow \omega=\dfrac{10\pi}{5}=2\pi(rad/s)\)
Vậy PT dao động là: \(x=5\cos(2\pi t+\dfrac{\pi}{3})cm\)
b) Áp dụng CT độc lập:
\(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow 5^2=3^2+\dfrac{v^2}{(2\pi)^2}\)
\(\Rightarrow v=\pm 8\pi(cm/s)\)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Phynit: cam on ban nhieu nhe :)