\(\frac{AB}{AC}\)=\(\frac{8}{15}\), BC= 51....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020
https://i.imgur.com/EjGPqUD.jpg
12 tháng 1 2020

Hình ảnh có liên quan

Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).

=> \(AB^2+AC^2=51^2\)

=> \(AB^2+AC^2=2601\left(cm\right).\)

Ta có: \(\frac{AB}{AC}=\frac{8}{15}.\)

=> \(\frac{AB}{8}=\frac{AC}{15}.\)

=> \(\frac{AB^2}{64}=\frac{AC^2}{225}\)\(AB^2+AC^2=2601\left(cm\right).\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{AB^2}{64}=9\Rightarrow AB^2=576\Rightarrow AB=24\left(cm\right)\left(vìAB>0\right)\\\frac{AC^2}{225}=9\Rightarrow AC^2=2025\Rightarrow AC=45\left(cm\right)\left(vìAC>0\right)\end{matrix}\right.\)

Vậy \(AB=24\left(cm\right);AC=45\left(cm\right).\)

Chúc bạn học tốt!

10 tháng 2 2019

Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15

Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:

      BC2 = AB2 + AC2 

=> 512 = AB2 + AC2 

=> 2601 = AB2 + AC2

Áp dụng t/c của dãy tỉ số bằng nhau

Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)

=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)

Vậy ...

b) tự lm

10 tháng 2 2019

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)

\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)

\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)

        \(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)

25 tháng 2 2018

Từ gt: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}.\)

Theo Py-ta-go ta có: \(AB^2+AC^2=BC^2.\)

\(\Leftrightarrow AB^2+AC^2=15^2=225\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{225}{25}=9.\)

\(\Rightarrow AB^2=9\cdot9=81\Rightarrow AB=9\)

\(\Rightarrow AC^2=9\cdot16=144\Rightarrow AC=12\)

VẬY AB=9 CM và AC=12CM

21 tháng 3 2020

Cho tam giác ABC vuông tại A có AB/AC = 3/4,BC = 15cm,Tính AB và AC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

hok tốt

19 tháng 2 2019

a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
 

19 tháng 2 2019

A B C

Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc

AB2+AC2=BC2=2601(1)

Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)

\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)

Thay vào (1) ta đc

\(AB^2+\frac{AB^2.225}{64}=2601\)

\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)

\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)

Vậy ........

b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

tk mk nhé

11 tháng 5 2016

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

=>AB2+AC2=262 (1)

Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:

\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)

=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)

11 tháng 5 2016

Sửa 

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)

\(\Rightarrow AC\approx9,7\left(cm\right)\)

=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)

13 tháng 2 2019

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)

\(\Rightarrow\left(\frac{AB^2}{8}\right)+\left(\frac{AC^2}{15}\right)=\frac{AB^2}{64}+\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)

\(\Rightarrow\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)

       \(\frac{AC^2}{225}=9\Rightarrow AC=45\left(cm\right)\)

AB/AC = 3/4

AB =3/4 AC

Tam giác ABC là tam giác vuông tại A
Áp dụng định lý Pytago:

AB^2 +AC^2 = BC^2

(3/4AC)^2 +AC^2 = 225

9/16 AC^2 +AC^2 =225

AC^2 x 25/16 = 225

AC^2 = 225 x16/25

AC^2 = 144 ( MÀ AC > 0)

Suy ra AC= 12

Suy ra AB/12 = 3/4

AB= 12x3/4 = 9 cm

7 tháng 2 2020

có \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\) (1)

và BC = 15 cm

Tam giác ABC có góc A = 90 độ nên tam giác ABC vuông tại A

Áp dụng định lý pytago vào tam giác ABC vuông tại A:

\(AB^2+AC^2=BC^2\)(2)

thế (1) vào (2), ta được:

\(\frac{9}{16}AC^2+AC^2=225\)

\(\frac{25}{16}AC^2=225\)

\(AC^2=144\)

\(\orbr{\begin{cases}AC=12\\AC=-12\end{cases}}\)

AC = -12 (loại) vì AC \(\in\)N*

vậy AC = 12 cm

AB = 3/4.AC = 3/4 . 12 = 9 cm