Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(E=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-1+\dfrac{1}{99}=\dfrac{2}{99}-1=-\dfrac{97}{99}\)
\(\frac{1}{2}.3+\frac{1}{3}.4+...+\frac{1}{19}.20\)
\(=\frac{3}{2}.\frac{4}{3}......\frac{20}{19}\)
\(=\frac{3.4.5....20}{2.3.4...19}\)
\(=\frac{20}{2}=10\)
\(\frac{1}{2}\times3+\frac{1}{3}\times4+\frac{1}{4}\times5+...+\frac{1}{19}\times20\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{20}{19}\)
\(=\frac{3\times4\times5\times...\times20}{2\times3\times4\times...\times19}\)
\(=\frac{20}{2}\)
\(=10\)
a)\(\frac{X}{5}=\frac{5}{6}+\frac{-19}{30}\)
\(\frac{X}{5}=\frac{1}{5}\)
Vậy \(X=1\)
b)\(X-\frac{41}{5}=\frac{-2}{3}\)
\(X=\frac{-2}{3}+\frac{41}{5}\)
\(X=\frac{113}{15}\)
Vậy \(X=\frac{113}{15}\)
c)\(\frac{31}{5}-X=\frac{11}{3}+\frac{7}{10}\)
\(\frac{31}{5}-X=\frac{131}{30}\)
\(X=\frac{31}{5}-\frac{131}{30}\)
\(X=\frac{11}{6}\)
Vậy \(X=\frac{11}{6}\)
d)\(\frac{9}{X}=\frac{2}{5}+\frac{-7}{20}\)
\(\frac{9}{X}=\frac{1}{20}\)
\(X=9:\frac{1}{20}\)
\(X=180\)
Vậy \(X=180\)
Hc tốt
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
Sau khi lược bỏ,ta còn lại:
\(A=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{18.19}+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}\)
\(\Rightarrow A=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{18}-\frac{1}{19}\)
\(=1-\frac{1}{19}=\frac{18}{19}\)