Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}\)
\(2A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{20-18}{18.19.20}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}=\dfrac{1}{2}-\dfrac{1}{19.20}\)
\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)
1) Ta có: \(\frac{-4}{7}-\frac{11}{19}+\frac{13}{19}\cdot\frac{-3}{7}+\frac{2}{19}:\frac{-7}{4}\)
\(=\frac{-4}{7}-\frac{11}{19}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-76}{133}-\frac{77}{133}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-200}{133}\)
2) Ta có: \(\left(\frac{-4}{9}+\frac{3}{5}\right):\frac{1}{\frac{1}{5}}+\left(\frac{1}{5}-\frac{5}{9}\right):\frac{1}{\frac{1}{5}}\)
\(=\left(\frac{-4}{9}+\frac{3}{5}\right)\cdot\frac{1}{5}+\left(\frac{1}{5}-\frac{5}{9}\right)\cdot\frac{1}{5}\)
\(=\frac{1}{5}\left(\frac{-4}{9}+\frac{3}{5}+\frac{1}{5}-\frac{5}{9}\right)\)
\(=\frac{1}{5}\left(-1+\frac{4}{5}\right)\)
\(=\frac{1}{5}\cdot\frac{-1}{5}=\frac{-1}{25}\)
3) Ta có: \(\frac{4}{5}-\left(-\frac{2}{7}\right)-\frac{7}{10}\)
\(=\frac{4}{5}+\frac{2}{7}-\frac{7}{10}\)
\(=\frac{56}{70}+\frac{20}{70}-\frac{49}{70}\)
\(=\frac{27}{70}\)
4) Ta có: \(\frac{2}{7}-\left(-\frac{13}{15}+\frac{4}{9}\right)-\left(\frac{5}{9}-\frac{2}{15}\right)\)
\(=\frac{2}{7}+\frac{13}{15}-\frac{4}{9}-\frac{5}{9}+\frac{2}{15}\)
\(=\frac{2}{7}+1-1=\frac{2}{7}\)
a) \(2^5+8\left[\left(-2\right)^3:\frac{1}{2}\right]^0-\left(\frac{1}{2}\right)^3\times2+\left(-2\right)^3\)
\(=32+8\times1-\frac{1}{8}\times2+\left(-8\right)\)
\(=32+8-\frac{1}{4}+\left(-8\right)\)
\(=40-\frac{1}{4}+\left(-8\right)\)
\(=39\frac{3}{4}+\left(-8\right)\)
\(=31\frac{3}{4}\)
b vaf c mai minhf lamf, ht
\(\frac{1}{2}.3+\frac{1}{3}.4+...+\frac{1}{19}.20\)
\(=\frac{3}{2}.\frac{4}{3}......\frac{20}{19}\)
\(=\frac{3.4.5....20}{2.3.4...19}\)
\(=\frac{20}{2}=10\)
\(\frac{1}{2}\times3+\frac{1}{3}\times4+\frac{1}{4}\times5+...+\frac{1}{19}\times20\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{20}{19}\)
\(=\frac{3\times4\times5\times...\times20}{2\times3\times4\times...\times19}\)
\(=\frac{20}{2}\)
\(=10\)