Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
$-A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}$
$=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{10-9}{9.10}$
$=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{4}-\frac{1}{10}=\frac{3}{20}$
$\Rightarrow A=\frac{-3}{20}$
Bài 11:
$A=\frac{2n}{n+3}=\frac{2(n+3)-6}{n+3}=2-\frac{6}{n+3}$
Để $A$ nguyên thì $\frac{6}{n+3}$ nguyên.
Với $n$ nguyên thì điều trên xảy ra khi $6\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$
$\Rightarrow n\in\left\{-4; -2; -1; -5; -6; 0; -9; 3\right\}$
Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=22019−8
\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8⇔2x(1+2+22+...+22015)=22019−8 (1)
Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015
\Rightarrow2A=2+2^2+2^3+...+2^{2016}⇒2A=2+22+23+...+22016
\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)⇒2A−A=(2+22+23+...+22016)−(1+2+22+...+22015)
\Rightarrow A=2^{2016}-1⇒A=22016−1
Khi đó (1) trở thành :
2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(22016−1)=22019−23
\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)⇔2x(22016−1)=23(22016−1)
\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)⇔2x=23(22016−1=0)
\Leftrightarrow x=3⇔x=3
Vậy : x=3x=3
2x+2x+1+...+2x+2015=22019−82�+2�+1+...+2�+2015=22019-8
→2x.1+2x.2+....+2x.22015=22019−8→2�.1+2�.2+....+2�.22015=22019-8
→2x.(1+2+...+22015)=22019−8→2�.(1+2+...+22015)=22019-8
Đặt:
A=1+2+...+22015�=1+2+...+22015
2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)
2A=2+22+...+220162�=2+22+...+22016
2A−A=(2+22+...+22016)−(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)
A=2+22+...+22016−1−2−...−22015�=2+22+...+22016-1-2-...-22015
A=22016−1�=22016-1
Nên:
2x.(1+2+...+22015)=22019−82�.(1+2+...+22015)=22019-8
→2x.(22016−1)=22019−8→2�.(22016-1)=22019-8
→2x=(22019−8):(22016−1)→2�=(22019-8):(22016-1)
→2x=22019−822016−1→2�=22019-822016-1
→2x=23.(22016−1)22016−1→2�=23.(22016-1)22016-1
→2x=23→2�=23
→x=3→�=3
Vậy x=3.
Bài 1
4n - 6 = 4n - 2 - 4 = 2(2n - 1) - 4
Để (4n - 6) ⋮ (2n - 1) thì 4 ⋮ (2n - 1)
⇒ 2n - 1 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ 2n ∈ {-3; -1; 0; 2; 3; 5}
⇒ n ∈ {-3/2; -1/2; 0; 1; 3/2; 5/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
B = \(\dfrac{4}{7}\) = \(\dfrac{4.4}{7.4}\) = \(\dfrac{16}{28}\); I = \(\dfrac{6}{13}\) = \(\dfrac{6.\left(-2\right)}{13.\left(-2\right)}\) = \(\dfrac{-12}{-26}\)
N = \(\dfrac{-5}{13}\) = \(\dfrac{-5.3}{13.3}\) = \(\dfrac{-15}{39}\); T = \(\dfrac{7}{21}\) = \(\dfrac{7.4}{21.4}\) = \(\dfrac{28}{84}\)
U = \(\dfrac{4}{11}\) = \(\dfrac{4.5}{11.5}\) = \(\dfrac{20}{55}\); O = \(\dfrac{5}{25}\) = \(\dfrac{5.3}{25.3}\) = \(\dfrac{15}{75}\)
H = \(\dfrac{1}{5}\) = \(\dfrac{1.11}{5.11}\) = \(\dfrac{11}{15}\); A = \(\dfrac{5}{8}\) = \(\dfrac{5.5}{8.5}\) = \(\dfrac{25}{40}\)
G = \(\dfrac{-3}{17}\) = \(\dfrac{-3.5}{17.5}\) = \(\dfrac{-15}{85}\); D = \(\dfrac{4}{16}\) = \(\dfrac{4.5}{16.5}\) = \(\dfrac{20}{80}\)
T | H | A | I | B | I | N | H | D | U | O | N | G |
84 | 11 | 25 | -12 | 16 | -12 | -15 | 11 | 80 | 55 | 75 | -15 | 85 |
Vì \(\left|x-y\right|\ge0;\left|y+\frac{9}{25}\right|\ge0\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\)
Mà \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\left|x-y\right|=0;\left|y+\frac{9}{25}\right|=0\)
\(\left|y+\frac{9}{25}\right|=0\Rightarrow y=\frac{-9}{25}\)
\(\Rightarrow\left|x-y\right|=\left|x-\frac{-9}{25}\right|=0\Rightarrow x=\frac{-9}{25}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.24}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\frac{125}{1032}\)
\(=\frac{25}{258}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.23}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\left(\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+...+\frac{5}{253.258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}.\frac{125}{1032}=\frac{25}{258}\)
Từ đề bài, ta suy ra:
\(\frac{2020\left(1+2021\right)}{2019\left(2019+3\right)}=\frac{2020\cdot2022}{2019\cdot2022}=\frac{2020}{2019}\)
\(\frac{2020+2020.2021}{2019^2+2019.3}=\frac{2020.\left(1+2021\right)}{2019.\left(2019+3\right)}=\frac{2020.2022}{2019.2022}=\frac{2020}{2019}=1\frac{1}{2019}\)
Chúc bn học tốt
nhiều thế ! cứu vừa thôi !