Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau gõ Latex cho dễ nhìn nhé em! :)
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2019-8\\ \Leftrightarrow2^x\cdot\left(1+2+2^2+...+2^{2015}\right)=2011\)
Ta thấy vế trái chia hết cho 2 nhưng vế phải chia 2 dư một nên không tồn tại giá trị của x thỏa mãn đề bài.
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
\(4^{n+2}+4^{n+3}+4^{n+4}+4^{n+5}=85.\left(2^{2019}\div2^{2015}\right)\)
\(\Leftrightarrow4^{n+2}\left(1+4^1+4^2+4^3\right)=85.2^{2019-2015}\)
\(\Leftrightarrow4^{n+2}.85=85.2^4\)
\(\Leftrightarrow4^{n+2}=2^4=4^2\)
\(\Leftrightarrow n+2=2\)
\(\Leftrightarrow n=0\)
`(2^x+1)^2 =25`
`=> (2^x+1)^2 = (+-5)^2`
\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
\(\left(x+6\right)\left(5^x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
\(\left(x-3\right)^{2023}=x-3\)
\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá
Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=22019−8
\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8⇔2x(1+2+22+...+22015)=22019−8 (1)
Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015
\Rightarrow2A=2+2^2+2^3+...+2^{2016}⇒2A=2+22+23+...+22016
\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)⇒2A−A=(2+22+23+...+22016)−(1+2+22+...+22015)
\Rightarrow A=2^{2016}-1⇒A=22016−1
Khi đó (1) trở thành :
2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(22016−1)=22019−23
\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)⇔2x(22016−1)=23(22016−1)
\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)⇔2x=23(22016−1=0)
\Leftrightarrow x=3⇔x=3
Vậy : x=3x=3
2x+2x+1+...+2x+2015=22019−82�+2�+1+...+2�+2015=22019-8
→2x.1+2x.2+....+2x.22015=22019−8→2�.1+2�.2+....+2�.22015=22019-8
→2x.(1+2+...+22015)=22019−8→2�.(1+2+...+22015)=22019-8
Đặt:
A=1+2+...+22015�=1+2+...+22015
2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)
2A=2+22+...+220162�=2+22+...+22016
2A−A=(2+22+...+22016)−(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)
A=2+22+...+22016−1−2−...−22015�=2+22+...+22016-1-2-...-22015
A=22016−1�=22016-1
Nên:
2x.(1+2+...+22015)=22019−82�.(1+2+...+22015)=22019-8
→2x.(22016−1)=22019−8→2�.(22016-1)=22019-8
→2x=(22019−8):(22016−1)→2�=(22019-8):(22016-1)
→2x=22019−822016−1→2�=22019-822016-1
→2x=23.(22016−1)22016−1→2�=23.(22016-1)22016-1
→2x=23→2�=23
→x=3→�=3
Vậy x=3.