Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
\(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
\(c,3a^2-6ab+3b^2-12c^2=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(d,x^2-25+y^2+2xy=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\)
Bài 1:
\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b-c\right)\left(a+b\right)\)
\(f,x^2-2x-4y^2-4y=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
\(g,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
\(h,x^2\left(x-1\right)+16\left(1-x\right)=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
1) \(\left(x+\dfrac{1}{3}\right)^3=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3\)
\(=x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}\)
2) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.y^2+3.2x.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=8x^3+12x^2y^2+6xy^4+y^6\)
3) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y\right)^3=\left(\dfrac{1}{2}x^2\right)^3+3.\left(\dfrac{1}{2}x^2\right)^2.\dfrac{1}{3}y+3.\dfrac{1}{2}x^2.\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=\dfrac{1}{8}x^6+\dfrac{1}{4}x^4y+\dfrac{1}{6}x^2y^2+\dfrac{1}{27}y^3\)
4) \(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.3x^2.\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)
5) \(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3=\left(\dfrac{2}{3}x^2\right)^3-3.\left(\dfrac{2}{3}x^2\right)^2.\dfrac{1}{2}y+3.\dfrac{2}{3}x^2.\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)
\(=\dfrac{8}{27}x^6-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-\dfrac{1}{8}y^3\)
6) \(\left(2x+\dfrac{1}{2}\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.\dfrac{1}{2}+3.2x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)
7) \(\left(x-3\right)^3=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
8) \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x.1+1^2\right)\)
\(=x^3+1^3\)
\(=x+1\)
9) \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x.3+3^2\right)\)
\(=x^3-3^3\)
\(=x^3-27\)
10) \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x.2+2^2\right)\)
\(=x^3-2^3\)
\(=x^3-8\)
11) \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x.4+4^2\right)\)
\(=x^3+4^3\)
\(=x^3+64\)
12) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
13) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+x^2.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
14) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
Bài 1:
a: \(x^3-10x^2+25x\)
\(=x\left(x^2-10x+25\right)\)
\(=x\left(x-5\right)^2\)
b: \(3x-3y-x^2+2xy-y^2\)
\(=3\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3-x+y\right)\)
c: \(x^3+x-y^3-y\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)
Bài trên:
\(16x^3y+0,25yz^3=\dfrac{1}{4}y\left(64x^3+z^3\right)=\dfrac{1}{4}y\left[\left(4x\right)^3+z^3\right]\\ =\dfrac{1}{4}y\left[\left(4x+z\right)\left(16x^2-4xz+z^2\right)\right]\\ ----\\ x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\\ -----\\ a^3+a^2b-ab^2-b^3=\left(a^3-b^3\right)+\left(a^2b-ab^2\right)\\ =\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)=\left(a-b\right)\left(a^2+2ab+b^2\right)=\left(a-b\right)\left(a+b\right)^2\)
Bài trên
\(x^3+x^2-4x-4\\ =x^2\left(x+1\right)-4\left(x+1\right)\\ =\left(x^2-4\right)\left(x+1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ ---\\ x^3-x^2-x+1\\ =x^2\left(x-1\right)-\left(x-1\right)\\ =\left(x^2-1\right)\left(x-1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\\ ---\\ x^4+x^3+x^2-1\\ =x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\\ =\left(x^3+x-1\right)\left(x+1\right)\\ ---\\ x^2y^2+1-x^2-y^2\\ =x^2.\left(y^2-1\right)-\left(y^2-1\right)\\ =\left(y^2-1\right)\left(x^2-1\right)\\ =\left(y-1\right)\left(y+1\right)\left(x-1\right)\left(x+1\right)\)
`# \text {Ryo}`
`2,`
`a)`
`x^3 -9x^2 + 27x - 27`
`= (x)^3 - 3*x^2 * 3 + 3*x*3^2 - (3)^3`
`= (x - 3)^3`
`b)`
`- (x^3)/8 + 3/4x^2 - 3/2x + 1`
`= - ( (x^3)/8 - 3/4x^2 + 3/2x - 1)`
`= - [ (x/2)^3 - 3*(x/2)^2 * 1 + 3*x/2*1^2 - 1^3]`
`= - (x/2 - 1)^3`
`c)`
Phiền bạn ghi lại đề giúp mình với ạ! Số mũ của biến 3 số sau mình kh đọc được.
`3,`
`a)`
`A = x^3 - 6x^2 + 12x - 8`
`= (x)^3 - 3*x^2*2 + 3*x*2^2 - (2)^3`
`= (x - 2)^3`
`b)`
`B = 1 - (3x)/2 + (3x^2)/4 - (x^3)/8` phải k c? (Mình thấy biến phần cuối hơi mờ).
`= 1^3 - 3*1^2*x/2 + 3* 1 * (x/2)^2 - (x/2)^3`
`= (1 - x/2)^3`
__
Cả bài 2 và 3, bạn sử dụng CT:
`A^3 - 3A^2B + 3AB^2 - B^3 = (A - B)^3`
a: Ta có: \(\left(3x-1\right)^2-\left(3x+4\right)\left(3x-4\right)=32\)
\(\Leftrightarrow9x^2-6x+1-9x^2+16=32\)
\(\Leftrightarrow-6x=15\)
hay \(x=-\dfrac{5}{2}\)
b: Ta có: \(\left(4x+3\right)^2-\left(4x-1\right)\left(4x+1\right)=-14\)
\(\Leftrightarrow16x^2+24x+9-16x^2+1=-14\)
\(\Leftrightarrow24x=-24\)
hay x=-1
=>(x+m)(x-1)+x^2-9=2(x^2+2x-3)
=>x^2-x+mx-m+x^2-9=2x^2+4x-6
=>x(m-5)=-6+m+9=m+3
Để phương trình có nghiệm duy nhất thì m-5<>0
=>m<>5
Bài 10:
1: \(\left(\dfrac{5x+y}{x^2-5xy}+\dfrac{5x-y}{x^2+5xy}\right)\cdot\dfrac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\dfrac{5x+y}{x\left(x-5y\right)}+\dfrac{5x-y}{x\left(x+5y\right)}\right)\cdot\dfrac{\left(x-5y\right)\cdot\left(x+5y\right)}{x^2+y^2}\)
\(=\dfrac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\dfrac{5x^2+25xy+xy+5y^2+5x^2-25xy-xy+5y^2}{x\left(x^2+y^2\right)}\)
\(=\dfrac{10x^2+10y^2}{x\left(x^2+y^2\right)}=\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)
2: \(\dfrac{4xy}{y^2-x^2}:\left(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}\right)\)
\(=\dfrac{-4xy}{\left(x-y\right)\left(x+y\right)}:\left(\dfrac{1}{\left(x+y\right)^2}-\dfrac{1}{\left(x-y\right)\left(x+y\right)}\right)\)
\(=\dfrac{-4xy}{\left(x-y\right)\left(x+y\right)}:\dfrac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}\)
\(=\dfrac{-4xy}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x+y\right)^2}{-2y}\)
\(=2x\left(x+y\right)\)
Bài 11:
1: ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)
\(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-3}{x-3}\)
2: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\left(\dfrac{2}{x-2}-\dfrac{2}{x+2}\right)\cdot\dfrac{x^2+4x+4}{8}\)
\(=\left(\dfrac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{\left(x+2\right)^2}{8}\)
\(=\dfrac{8\left(x+2\right)^2}{8\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{x-2}\)
3: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3};0;-\dfrac{5}{3}\right\}\)
\(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\left(\dfrac{-3x}{3x-1}+\dfrac{2x}{3x+1}\right)\cdot\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-3x\left(3x+1\right)+2x\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-9x^2-3x+6x^2-2x}{\left(3x+1\right)}\cdot\dfrac{3x-1}{2x\left(3x+5\right)}\)
\(=\dfrac{-x\left(3x+5\right)}{\left(3x+1\right)}\cdot\dfrac{3x-1}{2x\left(3x+5\right)}=\dfrac{-3x+1}{2\left(3x+1\right)}\)
4: ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)
\(\left(\dfrac{x}{x^2-25}-\dfrac{x-5}{x^2+5x}\right):\dfrac{2x-5}{x^2+5x}+\dfrac{x}{5-x}\)
\(=\left(\dfrac{x}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{x\left(x+5\right)}\right)\cdot\dfrac{x\left(x+5\right)}{2x-5}+\dfrac{x}{5-x}\)
\(=\dfrac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x\left(x+5\right)}{2x-5}-\dfrac{x}{x-5}\)
\(=\dfrac{\left(x-x+5\right)\left(x+x-5\right)}{\left(x-5\right)\left(2x-5\right)}-\dfrac{x}{x-5}\)
\(=\dfrac{5}{x-5}-\dfrac{x}{x-5}=\dfrac{5-x}{x-5}=-1\)