Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
Bài 7:
a: Xét (O) có
MA,MB là tiếp tuyến
nên MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM vuông góc với AB
b: Xét ΔOBH và ΔOIB có
góc OBH=góc OIB
góc BOH chung
Do đó: ΔOBH đồng dạng với ΔOIB
=>OB/OI=OH/OB
=>OB^2=OI*OH
\(A=\sqrt{3-\sqrt{5}}-\sqrt{4-\sqrt{15}}+\sqrt{6-3\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{6-2\sqrt{5}}-\sqrt{8-2\sqrt{15}}+\sqrt{12-6\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-1-\sqrt{5}+\sqrt{3}+3-\sqrt{3}\right)\)
=2/căn 2=căn 2
\(B=\sqrt{4-\sqrt{7}}-\sqrt{14-5\sqrt{3}}-\sqrt{5+\sqrt{21}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{28-10\sqrt{3}}-\sqrt{10+2\sqrt{21}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{7}-1-5+\sqrt{3}-\sqrt{7}-\sqrt{3}\right)\)
=-6/căn 2=-3căn2
\(C=\sqrt{11-6\sqrt{2}}-\sqrt{6-4\sqrt{2}}+\sqrt{7-2\sqrt{6}}\)
=3-căn 2-2+căn 2+căn 6-1
=căn 6
\(D=\sqrt{6-\sqrt{11}}-\sqrt{10+3\sqrt{11}}+2\sqrt{2}-1\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{12-2\sqrt{11}}-\sqrt{20+6\sqrt{11}}\right)+2\sqrt{2}-1\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{11}-1-\sqrt{11}-3\right)+2\sqrt{2}-1\)
=-1
\(F=\sqrt{6+3\sqrt{3}}-\sqrt{2+\sqrt{3}}+\sqrt{6-4\sqrt{2}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{12+6\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)+2-\sqrt{2}\)
=1/căn 2(3+căn 3-căn 3-1)+2-căn 2
=căn 2+2-căn 2
=2
b: (d) có hệ số góc bằng 1 nên (d): y=x+b
f(2)=-1/2*2^2=-2
Thay x=2 và y=-2 vào (d), ta được:
b+2=-2
=>b=-4
a:
2:
A=(x1-x2)^2-x1^2+x1(x1+x2)
=(x1-x2)^2+x1x2
=(x1+x2)^2-3x1x2
=(1/2)^2-3*(-1/4)=1/4+3/4=1
4:
a: cos^2a=1-(1/2)^2=1-1/4=3/4
=>\(cosa=\dfrac{\sqrt{3}}{2}\)
\(tana=\dfrac{1}{2}:\dfrac{\sqrt{3}}{2}=\dfrac{1}{\sqrt{3}}\)
\(cota=1:\dfrac{1}{\sqrt{3}}=\sqrt{3}\)
b: sin^2a=1-(3/4)^2=1-9/16=7/16
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}\)
Đk: x>0, x≠1
P=(√x/(√x -1) +√x/(√x +1)):√(4x)/(x-1)
P=((x+√x)/(x-1)+(x-√x)/(x-1)).(x-1)/√(4x)
P=(x+√x + x-√x)/(x-1).(x-1)/√(4x)
P=(2x)/(x-1).(x-1)/√(4x)
P=(2x)/√(4x)
P=√x
Vậy P=√x
a: =>x<=2x-1 và x>=0
=>-x<=-1 và x>=0
=>x>=1
b: =>x<=x+1 và x>=0
=>x>=0
c: =>x>=-4 và x^2-4x+6=x^2+8x+16
=>x>=-4 và -12x=10
=>x=-5/6(nhận)
d: =>căn x^2+1=x+3
=>x>=-3 và x^2+1=x^2+6x+9
=>6x=-8 và x>=-3
=>x=-4/3