Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- 4 cột đầu tiên xếp các hình vuông 4x4 theo cột dọc, ta xếp được 2016 : 4 = 504 hình vuông 4x4.
- 3 cột tiếp theo xếp các hình vuông 3x3 cũng theo cột dọc, sát với cột hình vuông 4x4 đã xếp, ta xếp được 2016 : 3 = 672 hình vuông 3x3.
- Tiếp tục, 4 cột tiếp theo xếp hình vuông 4x4, rồi 3 cột tiếp theo xếp các hình vuông 3x3, v.v. Cứ làm như vậy 287 lần {vì 2009 : (4+3) = 287} ta sẽ xếp đủ các hình vuông 4x4 và 3x3 thành hình vuông 2016x2009
Theo giải thiết ta có tam thức sau: \(f\left( x \right) = 20.15 - \left( {20 + x} \right)\left( {15 - x} \right) = {x^2} + 5x\)
Tam thức có \(\Delta = 25 > 0\), có hai nghiệm phân biệt \({x_1} = 0;{x_2} = -5\)
Vậy khoảng diện tích tăng lên là \(x>0\) và \(x<-5\), khoảng diện giảm đi là \(x \in(-5;0)\) và diện tích không đổi khi \(x = 0\) và \(x = -5\)
Nhân hai vế của bất phương trình với x ta được:\(1< x\). Bất phương trình này không tương đương với bất phương trình \(\dfrac{1}{x}< 1\) vì chưa thể khẳng định \(x>0\) mà ta phải xét hai trường hợp:
Th1: x > 0: \(Bpt\Leftrightarrow1< x\).
Th2: x < 0 \(Bpt\Leftrightarrow1>x\)
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
Câu trả lời là chúng ta không thể ghép các ô vuông 3x3 và 4x4 để được hình vuông 2014x2014.
Vì nếu giả sử ghép được. Sau khi ghép ta tô màu các cột của hình vuông 2014x2014 như sau:
Cột thứ nhất tô màu đỏ; cột thứ hai tô màu xanh, cột thứ ba tô màu vàng, rồi lặp lại các màu này: cột thứ tư màu đỏ, cột thứ năm màu xanh, cột thứ sáu màu vàng, v.v. và cột cuối cùng (cột 2014) là màu đỏ (vì 2014 chia cho 3 dư 1).
Ta thấy số ô màu đỏ nhiều hơn số ô màu xanh là 2014 ô (đúng bằng số ô của cột cuối cùng).
Ta có nhận xét:
- Các ô trên các miếng ghép 3x3 thì có số lượng các màu như nhau (số ô màu đỏ = số ô màu xanh = số ô màu vàng).
- Các ô trên các miếng ghép 4x4 thì có thể có: màu đỏ hơn màu xanh 4 ô hoặc màu đỏ bằng màu xanh hoặc màu đỏ ít hơn màu xanh 4 ô. Có nghĩa là hiệu giữa số ô đỏ và xanh chia hết cho 4.
Từ đó suy ra hiệu số ô màu đỏ và số ô màu xanh trên tất cả các miếng ghép 3x3 và 4x4 đều chia hết cho 4. Điều này mâu thuẫn với số ô màu đỏ nhiều hơn số ô màu xanh là 2014 ô (vì 2014 không chia hết cho 4).