Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài HCN thứ nhất là : x ( x > 0 ; m)
Chiều rộng HCN thứ nhất là : x - 9 ( m)
Diện tích HCN thứ nhất là : x( x - 9) ( m2)
Chiều dài HCN thứ hai là : x + 15 ( m)
Chiều rộng HCN thứ hai là : x - 9 + 5 = x - 4 ( m)
Diện tích HCN thứ hai là : ( x - 4)( x + 15) ( m2)
Theo đề bài , ta có phương trình sau :
( x - 4)( x + 15) - x( x - 9) = 640
⇔ x2 + 11x - 60 - x2 + 9x = 640
⇔ 20x = 700
⇔ x = 35 ( TM ĐK)
Chiều rộng HCN thứ nhất là : 35 - 9 = 26 ( m)
Chiều dài HCN thứ hai là : 35 + 15 = 50 (m)
Chiều rộng HCN thứ hai là : 35 - 4 = 31 ( m)
KL....
#)Giải :
Gọi chiều dài hình chữ nhật thứ nhất là x ( x > 0 ; m )
=> Chiều rộng hình chữ nhật thứ nhất là x - 9 ( m )
=> Diện tích hình chữ nhật thứ nhất là x( x - 9 ) ( m2)
=> Chiều dài hình chữ nhật thứ hai là x + 15 ( m )
=> Chiều rộng hình chữ nhật thứ hai là x - 9 + 5 = x - 4 ( m )
=> Diện tích hình chữ nhật thứ hai là ( x - 4 )( x + 15 ) ( m2)
Theo đề bài, ta có phương trình sau :
( x - 4 )( x + 5) - x( x - 9) = 640
<=> x2 + 11x - 60 - x2 + 9x = 640
<=> 20x = 700
<=> x = 35 ( thỏa mãn điều kiện )
=> Chiều rộng hình chữ nhật thứ nhất là : 35 - 9 = 26 ( m )
=> Chiều dài hình chữ nhật thứ nhất là : 35 + 15 = 50 ( m )
=> Chiều rộng hình chữ nhật thứ hai là : 35 - 4 = 31 ( m )
Vậy ....................................................................................
Gọi \(d_1\), \(r_1\), \(d_2\)và \(r_2\)lần lượt là chiều dài hcn1, chiều rộng hcn1, chiều dài hcn2 và chiều rộng hcn2. Theo đề bài ta có:
\(\hept{\begin{cases}d_1-r_1=9m\\r_2-r_1=5m\\d_2-d_1=15m\end{cases}}\Leftrightarrow\hept{\begin{cases}r_1=d_1-9\\r_2=d_1-4\\d_2=d_1+15\end{cases}}\)Vì diện tích hcn2 - hcn1 = 640(cm^2). Do đó:
\(d_2r_2-d_1r_1=640\Leftrightarrow\left(d_1+15\right)\left(d_1-4\right)-d_1\left(d_1-9\right)=640\)
\(\Leftrightarrow...\Leftrightarrow20d_1=700\Leftrightarrow d_1=35\left(m\right)\Rightarrow r_1=26\left(m\right);d_2=50\left(m\right);r_2=31\left(m\right)\)
Suy ra kích thước mỗi hình...............
Gọi x(m) là chiều rộng lúc đầu của khu đất(Điều kiện: x>0)
Chiều dài ban đầu là: x+10(m)
Diện tích khu đất lúc đầu là \(x\left(x+10\right)=x^2+10x\left(m^2\right)\)
Vì khi giảm chiều dài 5m và tăng chiều rộng 4m thì diện tích khu đất giảm 32m2 nên ta có phương trình:
\(\left(x+5\right)\cdot\left(x+4\right)=x^2+10x-32\)
\(\Leftrightarrow x^2+10x-32-x^2-9x-20=0\)
\(\Leftrightarrow x-52=0\)
hay x=52(thỏa ĐK)
Chiều dài ban đầu là:
10+52=62(m)
Vậy: Chiều rộng ban đầu của khu đất là 52m
Chiều dài ban đầu của khu đất là 62m
Bể thứ nhất :
\(V_1=1,2.x.y\) (m3)
Bể hai :
\(V_2=1,5.2x.2y=6xy\left(m^3\right)\)
2 bể :
\(V=V_1+V_2=1,2xy+6xy=7,2xy\left(m^3\right)\)
Gọi chiều dài HCN thứ nhất là : x ( x > 0 ; m)
Chiều rộng HCN thứ nhất là : x - 9 ( m)
Diện tích HCN thứ nhất là : x( x - 9) ( m2)
Chiều dài HCN thứ hai là : x + 15 ( m)
Chiều rộng HCN thứ hai là : x - 9 + 5 = x - 4 ( m)
Diện tích HCN thứ hai là : ( x - 4)( x + 15) ( m2)
Theo đề bài , ta có phương trình sau :
( x - 4)( x + 15) - x( x - 9) = 640
⇔ x2 + 11x - 60 - x2 + 9x = 640
⇔ 20x = 700
⇔ x = 35 ( TM ĐK)
Chiều rộng HCN thứ nhất là : 35 - 9 = 26 ( m)
Chiều dài HCN thứ hai là : 35 + 15 = 50 (m)
Chiều rộng HCN thứ hai là : 35 - 4 = 31 ( m)
............................................................
Đừng kết bạn với tôi.