K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Chọn đáp án D

Giả sử mặt cầu (S) có tâm I m ; 0 ; 0  và bán kính là R (do I ∈ O x ).

Ta có

 

 

Từ đó suy ra

Để có đúng một mặt cầu (S) thỏa mãn yêu cầu khi và chỉ khi phương trình (*) có đúng một nghiệm m, tức là

1 tháng 6 2017

Đáp án D.

Gọi I a ; 0 ; 0  là tâm của mặt cầu (S) có bán kính R.

Khoảng cách từ tâm I đến hai mặt phẳng (P) và (Q) lần lượt là  d 1 = a + 1 6 , d 2 = 2 a + 1 6

Theo giả thiết, ta có:

R 2 = d 1 2 + 2 2 = d 2 2 + r 2 ⇔ a + 1 2 6 + 4 = 2 a − 1 2 6 + r 2 ⇔ a 2 + 2 a + 25 = 4 a 2 − 4 a + 1 + 6 r 2 ⇔ 3 a 2 − 6 a + 6 r 2 − 24 = 0   *

Yêu cầu bài toán (*) có nghiệm duy nhất

⇔ Δ ' = − 3 2 − 3 6 r 2 − 24 = 0 ⇔ r = 3 2 2 .

28 tháng 4 2018

Chọn đáp án D.

24 tháng 11 2019

Chọn đáp án A

13 tháng 3 2018

15 tháng 1 2017

Đáp án A

Ba điểm A,B,C tạo thành một tam giác. Có 4 đường tròn tiếp xúc với cả ba đường thẳng AB,AC,BC (hình vẽ trên).

Mặt cầu (S) cần tìm tiếp xúc với 3 đường thẳng AB,AC,BC, do đó nó phải chứa 1 trong 4 đường tròn trên.

Xét với 1 đường tròn bất kì trong 4 đường tròn trên, giả sử là đường tròn tâm (O) nằm bên trong tam giác, ta có:

Tâm I của mặt cầu (S) phải nằm trên đường thẳng d đi qua tâm O và vuông góc với (ABC). Mặt khác, I thuộc mp (P) chứa (C), (C) lại không vuông góc với (ABC) do đó chỉ có 1 giao điểm của d với (P). Tương tự, với 3 đường tròn còn lại, với mỗi đường tròn ta tìm được 1 tâm I nữa. Vậy có 4 mặt cầu thỏa mãn yêu cầu.

31 tháng 10 2017

20 tháng 8 2018

Đáp án đúng : C

8 tháng 8 2017