Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Bài 1
a, Với \(x=9\)thì \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{3}{3}+1=2\)
b, Để \(A=\frac{5}{2}\)thì \(\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{5}{2}< =>\frac{3}{\sqrt{x}}=\frac{3}{2}< =>x=4\)
Bài 2
a, \(B=\frac{\sqrt{x}-2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}\left(đk:x>0\right)\)
\(=1-\frac{2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}=\frac{x+5\sqrt{x}+2}{x+\sqrt{x}}-\frac{2}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+5x+2\sqrt{x}-2x-2\sqrt{x}}{x\sqrt{x}+x}=\frac{x\sqrt{x}+3x}{x\sqrt{x}+x}\)
\(=1+\frac{2x}{x\left(\sqrt{x}+1\right)}=1+\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(A=\frac{3+\sqrt{x}}{\sqrt{x}}\)Thay x = 9 ta có :
\(VT=\frac{3+\sqrt{9}}{\sqrt{9}}=\frac{3+3}{3}=2\)
Bài ra ta có : \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\Leftrightarrow\frac{3}{\sqrt{x}}+1=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}=\frac{3}{2}\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Ta có:
\(x=\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}=6-\sqrt{35}\)
Vì x là nghiệm của P(x) nên \(P\left(x\right)=x^3+ax^2+bx-1⋮\left(x-6+\sqrt{35}\right)\)
Ta có: \(P\left(x\right)=x^3+ax^2+bx-1\)
\(=\left(x-6+\sqrt{35}\right)\left(x^2+\left(a+6-\sqrt{35}\right)x+\left(6-\sqrt{35}\right)a+\left(6-\sqrt{35}\right)^2+b\right)+\left(6-\sqrt{35}\right)^2a+\left(6-\sqrt{35}\right)^3+\left(6-\sqrt{35}\right)b-1\)
Để nó là phép chia hết thì:
\(\left(6-\sqrt{35}\right)^2a+\left(6-\sqrt{35}\right)^3+\left(6-\sqrt{35}\right)b-1=0\)
\(\Leftrightarrow b=\frac{1-\left(6-\sqrt{35}\right)^2a-\left(6-\sqrt{35}\right)^3}{6-\sqrt{35}}\left(1\right)\)
Với mọi a, b thoản mãn (1) thì P(x) sẽ có nghiệm \(x=6-\sqrt{35}\)
1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm
Với mọi a;b;c không âm ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng:
a.
\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
b.
\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
c.
\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)