Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với \(x=\sqrt{2}\) là nghiệm. Đặt
Đặt \(x^3+ax^2+bx+c=(x+\sqrt{2})(x+m)(x+n)\)
Thực hiện khai triển:
\(\Leftrightarrow x^3+ax^2+bx+c=x^3+x^2(m+n+\sqrt{2})+x(mn+\sqrt{2}m+\sqrt{2}n)+\sqrt{2}mn\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} m+n+\sqrt{2}=a\\ mn+\sqrt{2}(m+n)=b\\ \sqrt{2}mn=c\end{matrix}\right.(*)\)
\(\Rightarrow \frac{c}{\sqrt{2}}+\sqrt{2}.a=b+2\)
\(\Rightarrow \sqrt{2}(b+2)=c+2a\in\mathbb{Q}\)
Mà \(b+2\in\mathbb{Q}; \sqrt{2}\not\in\mathbb{Q}\) nên điều trên xảy ra khi \(b+2=0\Leftrightarrow b=-2\)
Do đó: \(mn+\sqrt{2}(m+n)=-2\)
\(\Leftrightarrow (m+\sqrt{2})(n+\sqrt{2})=0\Rightarrow \left[\begin{matrix} m=-\sqrt{2}\\ n=-\sqrt{2}\end{matrix}\right.\)
Không mất tq, giả sử \(m=-\sqrt{2}\Rightarrow n=a\) (theo $(*)$)
Vậy 3 nghiệm của pt là: \((\sqrt{2}; -\sqrt{2}; a)\)
1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0
*nếu x<1. ta có: A=x8 +x2 (1-x3)+ (1-x)>0 (từng số hạng >o)
ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !
\(f\left(x\right)=x^3+ax+b\)
\(f\left(x\right)\)chia \(x+1\)dư \(7\)nên \(f\left(-1\right)=7\)
\(f\left(x\right)\)chia \(x-3\)dư \(5\)nên \(f\left(3\right)=5\)
\(\hept{\begin{cases}-1-a+b=7\\27+3a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-\frac{15}{2}\\b=\frac{1}{2}\end{cases}}\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11