Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :
\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách:
\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\) cách:
Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.
b) Nếu trong \(5\) học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :
\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.
\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.
Còn lại bn tự lm nha, mỏi tay quá
bài này có hai cách làm
cách 1
(1nữ 4nam).(2nữ 3nam)=\((2C1.8C4)+(2C2..8C3)=196\)
cách 2
giả sử không có em nữa nào, ròi láy cái tổng trừ đi
\(10C5-8C5=196\)
Do trong tổ chỉ có 3 nữ nên trong 4 học sinh luôn có ít nhất 1 nam bất kể cách chọn
Do đó số cách chọn thỏa mãn: \(C_9^4=...\)
Trường hợp 1: Chọn 3 nữ, 2 nam ⇒ có cách chọn
Trường hợp 2: Chọn 4 nữ, 1 nam có cách chọn
Do đó có cách chọn.
Chọn B.
Xếp 6 học sinh nữ: \(6!\) cách
6 học sinh nữ tạo ra 5 khe trống (khe trống ở đây hiểu là khe trống giữa 2 học sinh nữ), xếp 4 học sinh nam vào 5 khe trống đó: \(A_5^4\) cách
Tổng cộng: \(6!.A_5^4=...\) cách
cần lấy 4 bạn đi thi thể thao => tổng số nam và nữ là 4.
mỗi lần chọn phải có ít nhất là 1 nam 1 nữ , có nghĩa là số nam và số nữ tối thiểu là 1 và tối đa là 3.
vì số nam và nữ là các số tự nhiên
do đó có 3 cách chọn là: 1 nam - 3 nữ
2 nam - 2 nữ
3 nam - 1 nữ