Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử:,
+) nn chia 3 dư 1 thì n2 cũng chia 3 dư 1, khi đó n2−1 chia 3 dư 0 nên không là số nguyên tố.
+) nn chia 3 dư 2 thì n^2 cũng chia 3 dư 1, khi đó n2-1 chia 3 dư 0 nên không là số nguyên tố
Vậy ta có đpcm :)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
n2+n+6=n(n+1)+6
n(n+1) không có tận cùng=4;9=>n(n+1)+6 không chia hết cho 5
=>n2+6 không chia hết cho 5
=>đpcm
Vì n không chi hế cho 3 => n chia 3 dư 1 hoặc n chia 3 dư 2
=> n có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N )
+) Với n = 3k + 1 => n2 = ( 3k + 1 )2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3( 3k2 + 2k ) + 1
Vì 3( 3k2 + 2k ) chia hết cho 3 => 3( 3k2 + 2k ) + 1 chia 3 dư 1 ( 1 )
+) Với n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2)( 3k + 2) = 9k2 + 12k + 4 = 3( 3k2 + 4k + 1 ) + 1
Vì 3( 3k2 + 4k + 1 ) chia hết cho 3 => 3( 3k2 + 4k + 1 ) + 1 chia 3 dư 1 ( 2 )
Từ (1) ; ( 2 ) => n2 chia 3 dư 1 ( đpcm )
Lời giải:
Xét \(n=3k\Rightarrow n(n+2)(n+7)=3k(n+2)(n+7)\vdots 3\)
Xét \(n=3k+1\Rightarrow n(n+2)(n+7)=n(3k+3)(n+7)=3n(k+1)(n+7)\vdots 3\)
Xét \(n=3k+2\Rightarrow n(n+2)(n+7)=n(n+2)(3k+9)=3n(n+2)(k+3)\vdots 3\)
Từ các TH trên ta suy ra \(n(n+2)(n+7)\vdots 3\) với mọi \(n\in\mathbb{N}\)
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Ta có:
Vì n không chia hết cho 3 nên: n=(a.3+1) hoặc (a.3+2)
Nếu n=(a.3+1) thì:(a.3+1)2=a.3.a.3+a.3+a.3+1 Vì (a.3.a.3+a.3+a.3)đều chia hết cho 3 nhưng 1:3(dư 1)
Suy ra (a.3+1)2:3(dư 1)
Nếu n=(a.3+2) thì:(a.3+2)2=a.3.a.3+a.3.2+2.a.3+2.2 Vì (a.3.a.3+a.2.3+2.a.3)đều chia hết cho 3 nhưng (2.2):3(dư 1)
Suy ra (a.3+2)2:3(dư 1)
Vậy ĐCCM
Xét n chia hết cho 3 hay n^2 chia hết cho 3
Xét n chia 3 dư 1 có dạng 3k+1 thì n^2=(3k+1)^2=9k^2+6k+1 chia 3 dư 1
Xét n chia 3 dư 2 có dạng 3k+2 thì n^2=(3k+2)^2=9k^2+12k+4 chia 3 dư 1
=> đpcm