K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Cac ban oi lam giup minh voi 

18 tháng 9 2019

\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)

\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)

\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)

28 tháng 11 2016

 Ta có:  \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)⇔ p(x+y)=xy                 (1)

Vì p là số nguyên tố nên suy ra trong hai số x,y luôn có 1 số chia hết cho p.

Không mất tính tổng quát ta giả sử: x ⋮ p ⇒ x=kp (k∈N∗)

Nếu k=1, thay vào (1) ta được: p(p+y)=p ⇒ p+y=1, vô lí.

Do đó k≥2. Từ (1) suy ra: p(kp+y)=kp.y ⇔ y=\(\frac{kp}{k-1}\)

Do y∈N∗ mà (k;k−1)=1 ⇒ p ⋮ k−1 ⇒ k−1∈{1;p}

∙ k−1=1 ⇒ k=2⇒x=y=2p

∙ k−1 = p ⇒ k=p+1 ⇒ x=p(p+1),y=p+1


Vậy phương trình có ba nghiệm là: (2p;2p),(p+1;p2+p),(p2+p;p+1).

28 tháng 11 2016

bài này lớp mấy j bn???....

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\) 

\(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)

\(\frac{15}{8}+\frac{5}{8}\)

\(\frac{5}{2}\)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)

\(=\frac{49}{34}\)