Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (x+2)(x+4)(x+6)(x+8)+16 =(x+2)(x+8)(x+4)(x+6)+16 =(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+20
ta được: (t-4)(t+4) =t2-16 thay lại biểu thức A ta đc:
A = t2 -16 +16 =t2 =(x2+10x+20)2
Vậy A là số CP
\(A=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow A=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt \(y=x^2+10+20\)
\(\Rightarrow A=\left(y-4\right)\left(y+4\right)+16\)
\(\Leftrightarrow A=y^2-16+16\)
\(\Leftrightarrow A=y^2=\left(x^2+10x+20\right)^{20}\)
Vậy với mọi STN x thì A luôn là 1 số chính phương
\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+9\)
Đặt \(x^2+5x+3=a\),ta có
\(\left(a-3\right)\left(a+3\right)+9\)
\(=a^2-9+9\)
\(=a^2\)
Vậy biểu thức đã cho là số chính phương