Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1\) là 2 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)
Vì \(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)
b, \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=a\left[2a-3-2\left(a+1\right)\right]\)
\(=-5a\) chia hết cho \(5\left(đpcm\right)\)
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)
b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số liên tiếp
nên \(A⋮3!\)
hay A chia hết cho 6
ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
Ta có: \(D=\dfrac{2a^3+a^2+2a+4}{2a+1}=\dfrac{a^2\left(2a+1\right)+\left(2a+1\right)+3}{2a+1}\)
\(=\dfrac{\left(2a+1\right)\left(a^2+1\right)+3}{2a+1}=\dfrac{\left(2a+1\right)\left(a^2+1\right)}{2a+1}+\dfrac{3}{2a+1}\) \(=a^2+1+\dfrac{3}{2a+1}\)
Để \(D\in Z\) <=> \(a^2+1+\dfrac{3}{2a+1}\in Z\)
=> \(\left\{{}\begin{matrix}a^2\in Z\\\dfrac{3}{2a+1}\in Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a\in Z\\\dfrac{3}{2a+1}\in Z\end{matrix}\right.\)
Để \(\dfrac{3}{2a+1}\in Z\) <=> \(3⋮2a+1\)
mà \(a\in Z\) => \(2a+1\inƯ_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
2a+1 | 1 | -1 | 3 | -3 |
a | 0 | -1 | 1 | -2 |
Vậy \(D\in Z\) khi \(a\in\left\{0;\pm1;-2\right\}\)
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
a,\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)\)
\(=a\left(a+2\right)\left(a+1\right)⋮3⋮2\)
\(⋮6\left(ĐPCM\right)\)
b,\(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\left(ĐPCM\right)\)