K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6

 

28 tháng 6 2016

Ta thực hiện phép chia và được kết quả:

\(n^6-6n^5+10n^4+n^3+98n-26=\left(n^3-n+1\right)\left(n^3-6n^2+11n-6\right)+17n^2+81n-20\)

Vậy thương phép chia là \(A=n^3-6n^2+11n-6\)

Ta phân tích A thành nhân tử: \(A=n^3-n^2-5n^2+5n+6n-6=\left(n-1\right)\left(n^2-5n+6\right)\)

\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\)

Do A là tích ba số nguyên liên tiếp nên A là bội số của 6(đpcm).

10 tháng 6 2019


Hỏi đáp Toán

27 tháng 11 2015

bạn làm phép chia đi ạ @@ sau đó thì phân tích thương thành nhân tử 

15 tháng 10 2022

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

\(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

 

9 tháng 8 2016

Đề bài chưa đúng bạn nhé :(

Thử với n = 3 thì thương phép chia A/B là một số không phải số nguyên

9 tháng 8 2016

thế thì đề bài sai r , k phải lm đúng k pn

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Bài 1:

Nếu $n$ không chia hết cho $7$ thì:

\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

b)

Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)

Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)

Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)

Tóm lại, $A$ chia hết cho $2$

---------

Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)

Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:

\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)

Vậy \(A\vdots 3\)

-----------------

Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)

+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)

+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$

\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)

Tóm lại $A\vdots 5$

Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)

Ta có đpcm.