Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)
Câu a : Ta có :
\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)
Câu b : Ta có :
\(C=\left(2n+1\right)^2-1=\left(2n+1-1\right)\left(2n+1+1\right)=2n\left(2n+2\right)=4n^2+4n=8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\)
Do có thừa số là 8 nên \(8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\) luôn chia hết cho 8
\(\Rightarrow C=\left(2n+1\right)^2-1\) chia hết cho 8 ( đpcm )
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a,n(2n-3)-2n(n+1)
=2n2-3n-2n2-2n
=-5n⋮5
b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số liên tiếp
nên \(A⋮3!\)
hay A chia hết cho 6