K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

khó quá xem trên mạng

20 tháng 2 2018

Dễ mà

Ta có: \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

\(=4^n\cdot4^3+4^n\cdot4^2-4^n\cdot4-4^n\)

\(=4^n\left(4^3+4^2-4-1\right)=4^n\cdot75\)

Biến đổi tí xíu ta có:

\(4^n\cdot75=4^{n-1}\cdot4\cdot75=\left(4^{n-1}\cdot300\right)⋮300\)

11 tháng 6 2021

đặt A=2^4n+1=16^n nhân 2

16^n đồng dư với 69 (mod 10)

suy ra: 16^n nhân 2 đồng dư với 2 nhân 6=12=2(mod 10)

A : 10 dư 2=10k+2(k thuộc n)

đặt B=3^4n+1

=81^n nhân 3 đồng dư với 1 nhân 3=3(mod 10)

suy ra B:10 dư 3=10p+3(p thuộc N)

ta có 3^2^4n+1+3^3^4n+1+5

=3^10k+2 + 3^10p+3+5

3^10 đồng dư vơí 1(mod 11)

suy ra 3^10k+2 đồng dư với 1 nhân 3^2=9(mod 11)

suy ra 3^10p+3 đồng dư với 1 nhân 3^3=27(mod 11)

5 đồng dư với 5(mod 11)

suy ra 3^2^4n+1 + 3^3^4n+1+5 đồng dư với 9+27+5=41(mod 11)

          gửi bn

3 tháng 3 2022

đồng dư với 41 rồi làm sao nói chia hết cho 11 ạ

 

26 tháng 6 2015

a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)

Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.

26 tháng 2 2020

đề là j vậy?

26 tháng 2 2020

chắc là tìm n để thỏa mãn điều kiện

a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1

Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )

b) Tương tự

16 tháng 6 2021

Ta có 74n - 1 = (74)n - 1 = (...1)n - 1 = (...1) - 1 = (...0)

=> 74n - 1 \(⋮\)5

Ta có 34n + 1 + 2 =34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 =(...1).3 + 2 =(...3) + 2 = (...5)

=> 34n + 1 + 2 \(⋮\)5

18 tháng 3 2018

Bài 1 Bài này sai đề bạn nhé!!!!

Bài 2:

a) 74n = (74)n =2401n

Mà 2401n luôn có tận cùng bằng 1

\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5

b)34n + 1 = (34)n . 3 = 81n . 3

Mà (......1)n luôn có tận cùng là 1

\(\Rightarrow\)(......1)n .3 tận cùng là 3

\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5

c)Câu này hình như sai đề bạn nhé!!!

d)92n + 1 = (92)n . 9 = 81n .9

Mà 81n luôn có tận cùng là 1

\(\Rightarrow\) 81n . 9 có tận cùng là 9

\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10

Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!

5 tháng 6

Ta phân tích biểu thức đã cho ra nhân tử :

A = n4−4n3−4n2+16nA

   =[n4−4n3]−[4n2−16n]

   =n3(n−4)−4n(n−4)

   =n(n−4)[n2−4]

   =n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : 

A=(2k+2)(2k)(2k+4)(2k−2)

  =16k(k−1)(k+1)(k+2)

  =16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

5 tháng 6

Ta phân tích biểu thức đã cho ra nhân tử :

A = n4−4n3−4n2+16nA

   =[n4−4n3]−[4n2−16n]

   =n3(n−4)−4n(n−4)

   =n(n−4)[n2−4]

   =n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : 

A=(2k+2)(2k)(2k+4)(2k−2)

  =16k(k−1)(k+1)(k+2)

  =16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2) là tích của bốn số nguyên dương liên tiếp, tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm