Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(29^m+1\right)\left(29^m+2\right)\left(29^m+3\right)\left(29^m+4\right)\)
\(\Rightarrow29^m\left(1+2+3+4\right)=29^m\cdot10⋮5\)
= 29 m +1 x 29m+2 x 29m+3 x 29m+4
= 29m x (1+2+3+4)
=29mx10 chia hết cho 5
=> 29m + 1 x 29m + 2 x 29m + 3 x 29m + 4 chia hết cho 5
|
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
1):
Ta có: 51 chia hết cho 3
120 chia hết cho 3
453 chia hết cho 3
=>51a+120b+453c chia hết cho 3
2):
Ta có:
A=5+52+53+...+530
=>A=(5+52)+52(5.52)+...+528(5+52)
=>A=(5+52).(52+54+...+528)
Vì 5+52=30 chia hết cho 6
=>A chia hết cho 6
Bài 2:
14 chia hết cho 2x+3
=>\(2x+3\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
mà x là số tự nhiên
nên 2x+3=7
=>x=2