Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)
Ta có :
\(x\left(x+1\right)=n\left(n+2\right)\)
\(\Leftrightarrow x^2+x=n^2+2n\)
\(\Leftrightarrow x^2+x+1=n^2+2n+1\)
\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)
Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương
\(x>0\), Ta có : \(x^2+x+1>x^2\)
\(x^2+x+1< x^2+x+1+x=x^2+2x+1\)
\(=\left(x+1\right)^2\)
\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)
=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp
Vậy không thể tồn tại số nguyên dương x
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu
Ta có:\(x\left(x+1\right)=k\left(k+2\right)\)
\(\Rightarrow x^2+x=k^2+2k\)
\(\Rightarrow x^2+x+1=k^2+2k+1\)
\(\Rightarrow x^2+x+1=\left(k+1\right)^2\)
Lại có:
\(x^2+x+1< x^2+2x+1=\left(x+1\right)^2\left(1\right)\) vì \(x\in Z^+\)
\(x^2+x>x^2\left(2\right)\)vì \(x\in Z^+\)
Từ \(\left(1\right);\left(2\right)\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
\(\Rightarrow x^2< \left(k+1\right)^2< \left(x+1\right)^2\)
Do \(\left(k+1\right)^2\) là số chính phương bị kẹp giữa 2 số chính phương liên tiếp nên không tồn tại k;x thỏa mãn đề bài