
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học.

Xét \(\Delta DEF\) có:
\(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (định lí tổng 3 góc trong một tam giác).
=> \(60^0+\widehat{E}+\widehat{F}=180^0\)
=> \(\widehat{E}+\widehat{F}=180^0-60^0\)
=> \(\widehat{E}+\widehat{F}=120^0.\)
Mà \(\widehat{E}=2\widehat{F}\left(gt\right)\)
=> \(2\widehat{F}+\widehat{F}=120^0\)
=> \(3\widehat{F}=120^0\)
=> \(\widehat{F}=120^0:3\)
=> \(\widehat{F}=40^0.\)
=> \(\widehat{E}+40^0=120^0\)
=> \(\widehat{E}=120^0-40^0\)
=> \(\widehat{E}=80^0.\)
Vậy \(\widehat{E}=80^0;\widehat{F}=40^0.\)
Chúc bạn học tốt!

Áp dụng tính chất dãy tỉ số bằng nhau cho giả thiết, ta có:
\(\dfrac{a}{b}=\dfrac{13}{15}\Leftrightarrow\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c+d}{13+15}=\dfrac{M}{28}\left(1\right)\)
\(\dfrac{c}{d}=\dfrac{17}{25}\Leftrightarrow\dfrac{c}{17}=\dfrac{d}{25}=\dfrac{c+d}{17+25}=\dfrac{M}{42}\left(2\right)\)
\(\dfrac{e}{f}=\dfrac{15}{21}\Leftrightarrow\dfrac{e}{15}=\dfrac{f}{21}=\dfrac{e+f}{15+21}=\dfrac{M}{36}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra: \(M\in BC\left(28;42;36\right)\). Mặc khác M là số tự nhiên nhỏ nhất, suy ra: M=112(đpcm).

Giải:
Ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{14}{22}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{7}{11}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}\\\dfrac{c}{11}=\dfrac{d}{13}\\\dfrac{e}{13}=\dfrac{f}{17}\end{matrix}\right.\)
Mà \(M=a+b=c+d=e+f\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}=\dfrac{a+b}{7+11}=\dfrac{M}{18}\left(1\right)\\\dfrac{c}{11}=\dfrac{d}{13}=\dfrac{c+d}{11+13}=\dfrac{M}{24}\left(2\right)\\\dfrac{e}{13}=\dfrac{f}{17}=\dfrac{e+f}{13+17}=\dfrac{M}{30}\left(3\right)\end{matrix}\right.\)
Kết hợp \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) suy ra:
\(M\in BC\left(18;24;30\right)\)
Mặt khác \(M\) là số tự nhiên nhỏ nhất có 4 chữ số
Nên \(M=1080\)
Vậy \(M=1080\)

Bài 4:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
BE=CD
Do đó: ΔABE=ΔACD
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
b: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xét ΔDAE cân tại A có \(\widehat{DAE}=60^0\)
nên ΔDAE đều
Nhận xét: Các góc trong ΔAED bằng nhau và cùng bằng 60 độ

O x y A B I E G C D
a) Xét \(\Delta OAB\) có :
\(OA=OB\left(gt\right)\)
=> \(\Delta OAB\) cân tại A
=> \(\widehat{OAB}=\widehat{OBA}\) (tính chất tam giác cân)
b) Xét \(\Delta OBD,\Delta OAC\) có :
\(\widehat{O}:chung\)
\(OA=OB\left(gt\right)\)
\(\widehat{OBD}=\widehat{OAC}\left(=90^{^O}\right)\)
=> \(\Delta OBD=\Delta OAC\left(g.c.g\right)\)
=> \(OD=OC\) (2 cạnh tương ứng)
Do đó, ΔOCD cân tại O.

Ở chỗ g(x) bn kiểm tra số sau dấu = là x hay là nhân nha, nếu là x thì bn viết thừa nha