K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

6 tháng 10 2019

giúp mik vs mik k cho

mai mik kt 1 tiết r

6 tháng 10 2019

a,

\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)

\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)

\(=\left(x-y\right)^3-\left(x-y\right)^3\)

\(=0\)

30 tháng 8 2018

Một năm trôi qua ~ . Giờ làm tiếp câu 1 :v

Câu a : \(x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

Câu b : \(\left(x^2-xy+y^2\right)\left(x+y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x^3+y^3\right)-\left(x^3-y^3\right)=x^3+y^3-x^3+y^3=2y^3\)

Câu c : \(7x\left(4y-x\right)+4y\left(y-7x\right)-\left(4y^2-7x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x^2=0\)

Câu d : \(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)

\(=4xz+2xy+2yz+y^2+xy-xz-y^2+yz\)

\(3xy+3yz+3xz=3\left(xy+yz+xz\right)\)

25 tháng 9 2017

Lười làm câu 1 :

Câu 2 :

\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)

\(\Leftrightarrow15x=30\)

\(\Rightarrow x=2\)

25 tháng 12 2019

Ta có :

\(x^2+4y^2+z^2-6x-12y-2z+4xy+13\)
\(=x^2+4y^2-9+4xy-12y-6x+z^2-2z+1+21\)
\(=\left(x+2y-3\right)^2+\left(z-1\right)^2+21\)
\(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\left(z-1\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2+21\ge21>0\forall x,y,z\)
Vậy \(x^2+4y^2+z^2-6x-12y-2z+4xy+13\) luôn dương với mọi x,y,z

27 tháng 12 2019

Sai rồi hay sao đấy

28 tháng 10 2022

a: =>x^2+y^2+z^2-4x+2y-6z+14=0

=>x^2-4x+4+y^2+2y+1+z^2-6z+9=0

=>(x-2)^2+(y+1)^2+(z-3)^2=0

=>x=2; y=-1; z=3

b: \(\left(x+y+z\right)\cdot\left(xy+yz+xz\right)\)

\(=x^2y+xyz+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2\)

\(=x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+3xyz\)

Theo đề, ta có:

\(x^2y+xy^2+y^2z+x^2z+yz^2+xz^2+2xyz=0\)

\(\Leftrightarrow x^2y+2xyz+yz^2+xy^2+2xzy+xz^2+zx^2-2xyz+zy^2=0\)

\(\Leftrightarrow y\left(x+z\right)^2+x\left(y+z\right)^2+z\left(x+y\right)^2=0\)

=>x=y=z=0

=>x^2013+y^2013+z^2013=(x+y+z)^2013