Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A=2x^2-4xy-12y+7x+4y^2+10\)
\(=(x^2-4xy+4y^2)+x^2-12y+7x+10\)
\(=(x-2y)^2+6(x-2y)+9+x^2+x+1\)
\(=(x-2y+3)^2+(x+\frac{1}{2})^2+\frac{3}{4}\)
Vì \((x-2y+3)^2\geq 0; (x+\frac{1}{2})^2\geq 0, \forall x,y\)
\(\Rightarrow A\geq 0+0+\frac{3}{4}>0, \forall x,y\)
Vậy $A$ luôn nhận giá trị dương với mọi $x,y$
A=x 2−2x+2
=x2-2x+1+1
=(x2-2x+1)+1
=(x-1)2+1
vì (x-1)2\(\ge0\forall x\)
=>(x-1)2+1\(\ge1\)
vậy A luôn dương với mọi x
B=x2+y2+2x−4y+6
=x2+2x+1+y2-4y+4+1
=(x2+2x+1)+(y2-4y+4)+1
=(x+1)2+(y-2)2+1
do (x+1)2\(\ge0\forall x\)
(y-2)2\(\ge0\forall y\)
=>(x+1)2+(y-2)2\(\ge0\)
=>(x+1)2+(y-2)2+1\(\ge1\)
=>B\(\ge1\)
vậy B luôn dương với mọi x;y
C= x2+y2+z2+4x−2y−4z+10
=x2+4x+4+y2-2y+1+z2-4z+4+1
=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
=(x+2)2+(y-1)2+(z-2)2+1
do (x+2)2\(\ge0\forall x\)
(y-1)2\(\ge0\forall y\)
(\(\)z-2)2\(\ge0\forall z\)
=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)
=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)
=>C\(\ge1\)
vậy C luôn dương với mọi x;y;z
bài 2: tìm x
a)\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1; y=-2
b)\(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy x=2; y=3
\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)
\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
(x^2-2xy+y^2)+(y^2+2y+1)+3y^2+1
=(x+y)^2+(y+1)^2+3y^2+1>1
vay A luon duong
A=x^2-4xy-2y+2+5y^2
=x^2-4xy+4y^2-2y+2+y^2
=(x-2y)^2+(y^2-2y+1)+1
=(x-2y)^2+(y-1)^2+1
ta có (x-2y)^2>/0 với mọi x,y
(y-1)^2>/0 với mọi x,y
1>0
=> (x-2y)^2+(y-1)^2+1 >0 với mọi x,y
=> A luôn duong với mọi x,y
b)\(4x^2+4x+5+y^2-4y\)
\(=\left[\left(2x\right)^2+4x+1\right]+\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2+\left(y-2\right)^2\)
c) \(4x^2+5y^2+4xy-12y+9\)
\(=\left(4x^2+4xy+y^2\right)+\left(4y^2-12y+9\right)\)
\(=\left(2x+y\right)^2+\left(2y-3\right)^2\)
Ta có :
\(x^2+4y^2+z^2-6x-12y-2z+4xy+13\)
\(=x^2+4y^2-9+4xy-12y-6x+z^2-2z+1+21\)
\(=\left(x+2y-3\right)^2+\left(z-1\right)^2+21\)
Vì \(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\left(z-1\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2+21\ge21>0\forall x,y,z\)
Vậy \(x^2+4y^2+z^2-6x-12y-2z+4xy+13\) luôn dương với mọi x,y,z
Sai rồi hay sao đấy