Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2\) + (y-2)^2 + 1
Xét nữa là xong
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)
c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)
\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)
=> Chưa thể khẳng định A dương
\(B=9x^2-6xy+2y^2+1\)
\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)
\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(C=x^2-2x+y^2+4y+6\)
\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
b: B=x^2-6x+8+3
=x^2-6x+11
=x^2-6x+9+2
=(x-3)^2+2>=2>0 với mọi x
c: =x^2-4xy+4y^2+x^2+2x+1+4
=(x-2y)^2+(x+1)^2+4>=4>0 với mọi x,y
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
\(a.\)
\(A=9x^2-6xy+2y^2+1\)
\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)
\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)
\(b.\)
\(B=x^2-2x+y^2+4y+6\)
\(B=x^2-2x+1+y^2+4y+4+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
\(c.\)
\(C=x^2-2x+2\)
\(C=x^2-2x+1+1\)
\(C=\left(x-1\right)^2+1\ge1\)
a) A=9x2-6xy+2y2+1
A=(3x)2-2.3x.y+y2+y2+1
A=(3x-y)2+(y2+1)≥0
Câu b, c tương tự câu a
Lời giải:
Ta có:
\(A=2x^2-4xy-12y+7x+4y^2+10\)
\(=(x^2-4xy+4y^2)+x^2-12y+7x+10\)
\(=(x-2y)^2+6(x-2y)+9+x^2+x+1\)
\(=(x-2y+3)^2+(x+\frac{1}{2})^2+\frac{3}{4}\)
Vì \((x-2y+3)^2\geq 0; (x+\frac{1}{2})^2\geq 0, \forall x,y\)
\(\Rightarrow A\geq 0+0+\frac{3}{4}>0, \forall x,y\)
Vậy $A$ luôn nhận giá trị dương với mọi $x,y$