Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN của 10n+9 và 15n+14 là d
Ta có
\(10n+9⋮d;15n+15⋮d\)
\(\Rightarrow2\left(15n+14\right)-3\left(10n+9\right)=\left(30n+28\right)-\left(30n+27\right)=1⋮d\)
Vậy d=1 nên 10n+9 và 15n+14 nguyên tố cùng nhau
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản
\(\frac{6n+5}{8n+7}\)là phân số tối giản khi và chi r khi
6n + 5 và 8n + 7 nguyên tố cùng nhau
gọi ước chung lớn nhất của 6n + 5 và 8n + 7 là d
ta có 6n + 5 chia hết cho d
=> 4( 6n+ 5) chia hết cho d
hay 24n + 20 chia hết cho d
ta cũng có 8n+ 7 chia hết cho d
nên 3( 8n+7) chia hết cho d
hay 24n + 21 chia hết cho d
nên ( 24n+21) - ( 24n + 20) chia hết cho d
=> 24n + 21 - 24n -20 chia hết cho d
=> 1 chia hết cho d
=> d= 1
vậy 6n+ 5 và 8n +7 có ước chung lớn nhất là 1
hay 6n+ 5 và 8n +7 nguyên tố cùng nhau
vậy \(\frac{6n+5}{8n+7}\) là phân số tối giản với mọi số nguyên n
Đặt \(\left(10n+9;15n+14\right)=d\)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N
gọi d là ƯC(10n + 9; 15n + 14)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)
\(\Rightarrow30n+28-30n-27⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên
Để D nguyên thì
8n-5 chia hết cho 3n+2
=> 24n-15 chia hết cho 3n+2
=> 24n+16-31 chia hết cho 3n+2
Vì 24n+16 chia hết cho 3n+2
=> -31 chia hết cho 3n+2
=> 3n+2 thuộc Ư(31)
3n+2 | n |
1 | -1/3 |
-1 | -1 |
31 | 29/3 |
-31 | -11 |
Mà n nguyên
=> n \(\in\){-1; -11}
Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:
8n-5 chia hết cho d => 24n-15 chia hết cho d
3n+2 chia hết cho d => 24n+16 chia hết cho d
=> 24n+16-(24n-15) chia hết cho d
=> 31 chia hết cho d
Giả dử phân số rút gọn được
=> 3n+2 chia hết cho 31
=> 3n+2+31 chia hết cho 31
=> 3n+33 chia hết cho 31
=> 3(n+11) chia hết cho 31
=> n+11 chia hết cho 31
=> n = 31k-11
KL: Để D tối giản thì n \(\ne\)31k-11
bài 1 nè
\(\frac{a}{5}-\frac{1}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{1}{b}=\frac{a}{5}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a}{15}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a-2}{15}\)
\(\Rightarrow\left(3a-1\right).b=1.15=15=1.15=3.5\)
rồi sau đó lập bảng và viết kết quả nhé
Gọi d là ước chung lớn nhất của 18n+5 và 15n+4
⇒ (18n+5) ⋮ d và (15n + 4) ⋮ d
⇒ (90n+25) ⋮ d và (90n + 24) ⋮d
⇒ (90n +25) - (90n + 24) ⋮d
⇒ 1 ⋮d
⇒ d ∈ Ư(1)
⇒ d = 1
⇒ ƯCLN(18n +5, 15n+4) =1
Vậy \(\dfrac{18n+5}{15n+4}\)là phân số tối giản