Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(10n+9;15n+14\right)=d\)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N
gọi d là ƯC(10n + 9; 15n + 14)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)
\(\Rightarrow30n+28-30n-27⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)
Gọi U(2m+9 ; 14m+62) = d
thì: 7*(2m+9) - (14m+62) chia hết cho d
=> 1 chia hết cho d.
Vậy d = 1
Hay số hữu tỷ x tối giản. ĐPCM.
Gọi \(d=ƯCLN\left(2m+9;14m+62\right)\) (\(d\in N\)*)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N\)*;\(1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2m+9;14m+62\right)=1\)
\(\Leftrightarrow x=\dfrac{2m+9}{14m+62}\) tối giản với mọi n
Gọi d là UCLN(2m+9;14m+62)
\(\Leftrightarrow2m+9⋮d\Rightarrow7\left(2m+9\right)⋮d\Rightarrow14m+63⋮d\)
\(\Leftrightarrow14m+62⋮d\)
\(\Leftrightarrow\left(14m+63\right)-\left(14m+62\right)⋮d\)
\(14m+63-14m-62⋮d\)
\(1⋮d\)
\(\Leftrightarrow\dfrac{2m+9}{14m+62}\)tối giản với mọi m
\(x=\dfrac{2m+9}{14m+62}\)
Gọi \(linh\) là \(UCLN\left(2m+9;14,+62\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}14m+63⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left(14m+63\right)-\left(14m+62\right)⋮linh\)
\(\Rightarrow14m+63-14m-62⋮linh\)
\(\Rightarrow1⋮linh\Rightarrow linh=1\)
Vậy \(x\) tối giản với mọi \(m\in N\)
Gọi d là ƯCLN(2m+9 ; 14m + 62) ( d \(\in\) N*)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Rightarrow d⋮1\Rightarrow d=1\)
Vậy ƯCLN(2m+9;14m+62)=1
Vậy \(\dfrac{2m+9}{14m+62}\) là p/s tối giản
Gọi d =ƯCLN(2m+9; 14m+62)
Vậy 2 m + 9 ⋮ d ⇒ 7 ( 2 m + 9 ) ⋮ d ⇔ 14 m + 63 ⋮ d 14 m + 62 ⋮ d ⇒ 14 m + 63 − ( 14 m + 62 ) ⋮ d ⇔ 1 ⋮ d ⇔ d = 1
Vậy ta được đpcm
Gọi UCLN của 10n+9 và 15n+14 là d
Ta có
\(10n+9⋮d;15n+15⋮d\)
\(\Rightarrow2\left(15n+14\right)-3\left(10n+9\right)=\left(30n+28\right)-\left(30n+27\right)=1⋮d\)
Vậy d=1 nên 10n+9 và 15n+14 nguyên tố cùng nhau
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản