Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
\(2\sqrt{1+a}=\sqrt{1+b}+\sqrt{1+c}\le\sqrt{2\left(1+b+1+c\right)}\)
\(\Rightarrow2\sqrt{1+a}\le\sqrt{2\left(2+b+c\right)}\)
\(\Rightarrow4\left(1+a\right)\le2\left(2+b+c\right)\)
\(\Rightarrow b+c\ge2a\)
\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)
Cauchy-Schwarz: \(A\ge\frac{9}{B}\)
Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)
\(\Rightarrow B\le6\)
\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng bđt bunhiacopxki ta có:
(√b+1+√c+1)2≤(b+1+c+1)(12+12)(b+1+c+1)2≤(b+1+c+1)(12+12)
⇔2(b+c+2)≥4(a+1)⇔2(b+c+2)≥4(a+1)
⇔b+c+2≥2a+2⇔b+c+2≥2a+2
⇔b+c≥2a
Áp dụng bđt Cauchy, ta có:
\(\sqrt{\frac{a}{bc}}\)+\(\sqrt{\frac{b}{ca}}\)≥ \(2\sqrt{\sqrt{\frac{ab}{abc^2}}}\)= \(2\sqrt{\sqrt{\frac{1}{c^2}}}\)= \(2\sqrt{\frac{1}{c}}\) (vì c>0)
Tương tự: \(\sqrt{\frac{b}{ca}}\)+\(\sqrt{\frac{c}{ab}}\)≥ \(2\sqrt{\frac{1}{a}}\)
\(\sqrt{\frac{c}{ab}}\)+\(\sqrt{\frac{a}{bc}}\)≥ \(2\sqrt{\frac{1}{b}}\)
Cộng vế theo vế của các bđt với nhau, ta có: \(2\)\(\left(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\right)\text{≥}\)\(2\left(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\right)\)
<=> \(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\text{≥}\)\(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)(đpcm)
Dấu "=" xảy ra <=> a = b = c
Bạn tham khảo tại đây:
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 9 - Học toán với OnlineMath
bình phương hai về bất đẳng thức ta được
\(1+b+1+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\)
\(\Leftrightarrow2+\left(b+c\right)+2\sqrt{\left(b+1\right)\left(c+1\right)}\ge4\left(1+a\right)\)(1)
do \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\) \(\Leftrightarrow2+\left(b+c\right)\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\) (2)
lay (1) +(2) ta co \(4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\Leftrightarrow b+c\ge2a\left(dpcm\right)\)