Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT C-S ta có:
\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\ge\left(1+1\right)\left(b+1+c+1\right)\)
\(=2\left(b+c+2\right)>2\left(2a+2\right)=4\left(a+1\right)\)
\(\Rightarrow VT^2>4\left(a+1\right)=VP^2\Rightarrow VT>VP\)
bình phương hai về bất đẳng thức ta được
\(1+b+1+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\)
\(\Leftrightarrow2+\left(b+c\right)+2\sqrt{\left(b+1\right)\left(c+1\right)}\ge4\left(1+a\right)\)(1)
do \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\) \(\Leftrightarrow2+\left(b+c\right)\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\) (2)
lay (1) +(2) ta co \(4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\Leftrightarrow b+c\ge2a\left(dpcm\right)\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
a) Để biểu thức có nghĩa thì \(\dfrac{-a}{3}\ge0\Rightarrow a\le0\)
b) Để biểu thức có nghĩa thì \(\dfrac{1}{a^2}\ge0\) (luôn đúng)
c) Để biểu thức có nghĩa thì \(\dfrac{\left(1-a\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(1-a\right)^3\ge0\\a\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\a\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a\le1\\a\ne0\end{matrix}\right.\)
d) Để biểu thức có nghĩa thì \(\dfrac{a^2+1}{1-2a}\ge0\Rightarrow1-2a>0\Rightarrow a< \dfrac{1}{2}\)
e) Để biểu thức có nghĩa thì \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left|a\right|\ge1\)
f) Để biểu thức có nghĩa thì \(\Rightarrow\dfrac{2a-1}{2-a}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2a-1\ge0\\2-a>0\end{matrix}\right.\\\left\{{}\begin{matrix}2a-1\le0\\2-a< 0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\a< 2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le\dfrac{1}{2}\\a>2\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le a< 2\)
Áp dụng bđt bunhiacopxki ta có:
(√b+1+√c+1)2≤(b+1+c+1)(12+12)(b+1+c+1)2≤(b+1+c+1)(12+12)
⇔2(b+c+2)≥4(a+1)⇔2(b+c+2)≥4(a+1)
⇔b+c+2≥2a+2⇔b+c+2≥2a+2
⇔b+c≥2a
bạn viết lại đề bài đi