Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n3 + 5
= n3 - n + 6n
= n.(n2 - 1) + 6n
= n.(n - 1).(n + 1) + 6n
Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6
=> n3 + 5n chia hết cho 6 ( đpcm)
a, n3 + 5
= n3 - n + 6n
= n.(n2 - 1) + 6n
= n.(n - 1).(n + 1) + 6n
Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6
=> n3 + 5n chia hết cho 6 ( đpcm)
Ta có: n3-3n2-3n-1=(n3-1)+(-3n2-3n-3)+3=(n-1)(n2+n+1)-3.(n2+n+1)+3
Để n3-3n2-3n-1 chia hết cho n2+n+1 thì: (n-1)(n2+n+1)-3.(n2+n+1)+3 chia hết cho n2+n+1
=>3 phải chia hết cho n2+n+1
=>n2+n+1 thuộc Ư(3)={1;-1;3;-3}
*n2+n+1=1
<=>n2+n=0
<=>n.(n+1)=0
<=>n=0 hoặc n=-1 (thỏa mãn cả hai)
*n2+n+1=-1
<=>n2+n+2=0 (vô lí vì: n2+n+2=(n+1/2)2+5/4 >0)
*n2+n+1=3
<=>n2+n-2=0
<=>n2-n+2n-2=0
<=>n.(n-1)+2.(n-1)=0
<=>(n-1)(n+2)=0
<=>n=1 hoặc n=-2 (thỏa mãn cả hai)
*n2+n+1=-3
<=>n2+n+4=0 (vô lí vì n2+n+4=(n+1/2)2+15/4>0)
Vậy n=-1;0;1;-2 thì n3-3n2-3n-1 chia hết cho n2+n+1
Ta có: n3-3n2-3n-1=n3-4 -3(n2+n+1) chia hết cho n2+n+1
nên n3-4 chia hết cho n2+n+1
n3-1 chia hết cho n2+n+1
nên 3 chia hết cho n2+n+1
thử các TH ra
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
neu m, n la cac so tu nhien thoa man 4m\(^2\)+m = 5n\(^2\)+n thi m-n va 5m +5n +1 la so chinh phuong
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
ta co n^3+3n^2-n-3=n^2(n+3)/(n+3)=(n^2-1)(n+3)=(n-1)(n+1)(n+3)
doi voi (n+1)(n+3) la hai so lien tiep cach nhau 2 don vi thi n la so le se chia het 8
nhung voi n-1 neu n=1 thi ket qua cua ca h se bang 0 nen toi thay de bai nay thieu dieu kien cua n phai la so le khac 1
n=1 thế thôi