Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D
a sai vì nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.
b, c, d đúng.
a) Nếu ABC là một tam giác cân thì ABC là tam giác đều
Đây là mệnh đề sai
b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều
Đây là mệnh đề đúng
ta có \(S=\frac{a^2-\left(b-c^2\right)}{4}=\frac{a^2-b^2-c^2+2bc}{4}\)
mà theo định lý cosin ta có \(a^2-b^2-c^2=-2bc.cos\left(A\right)\Rightarrow S=\frac{bc\left(1-cos\left(A\right)\right)}{2}\)
mà ta có công thức \(S=\frac{b.c.sin\left(A\right)}{2}\Rightarrow1-cos\left(A\right)=sin\left(A\right)\Rightarrow cos\left(A\right)+sin\left(A\right)=1\)
mà \(cos^2\left(A\right)+sin^2\left(A\right)=1\Rightarrow2sin\left(A\right).cos\left(A\right)=0\Rightarrow\orbr{\begin{cases}A=0^0\\A=90^0\end{cases}}\)
Do A>0 nên \(A=90^0\)Vậy ABC vuoogn tại A
TL:
sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A
Vế trái = sinA + sinB + sinC
= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2[cos(A - B)/2 + sinC/2]
=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]
= 4.cosC/2.cosB/2.cosA/2
Vế phải = 1 - cosA + cosB + cosC
= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2
= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)
= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2
= 4.sinA/2.cosB/2.cosC/2
Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC
<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2
<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0
mà cosB/2 ≠ 0 và cosC/2 ≠ 0
=> sinA/2 = cosA/2
<=> A/2 = 45o
<=> A = 90o
tam giác ABC vuông tại A
Chọn D.
+ Áp dụng định lí sin ta có
Suy ra sin2A = sinB. Sin C khi và chỉ khi :
Hay a2 = bc
+ Áp dụng định lí côsin và ý trên ta có
Vậy cả A và B đúng.