Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + b2 + c= ab + ac + bc
=> 2a2 + 2b2 + 2c2= 2ab + 2ac + 2bc
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2)=0
=> ( a - b)2 + ( a - c)2 + ( b - c)2 =0
Vì ( a - b)2 >= 0
( a - c)2>= 0
( b - c)2>=0
=> Để ( a - b)2 + ( a - c)2 + ( b - c)2 =0 thì a - b =0 ; a - c=0; b-c=0
=> a=b=c
=> Tam giác đó là tam giác đều
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2a32
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√412.a32.a=a234
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
Ta có : \(\tan A+\tan C=2\tan B\)
\(\Rightarrow\frac{\sin A}{\cos A}+\frac{\sin C}{\cos C}=2\frac{\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin A\cos C+\sin C\cos A}{\cos A\cos C}=\frac{2\sin B}{\cos C}\)
\(\Rightarrow\frac{\sin\left(A+C\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin\left(180-II\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin\left(B\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\cos B=2\cos A\cos C\)
\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=2\frac{b^2+c^2-a^2}{2bc}.\frac{a^2+b^2-c^2}{2ab}\)
\(\Rightarrow3c^2-2b^2=\frac{\left(2b^2-c^2\right)c^2}{b^2}\)
\(\Rightarrow2b^4-b^2c^2-c^4=0\)
\(\Rightarrow\left(b^2-c^2\right)\left(2b^2+c^2\right)=0\)
\(\Rightarrow b=c\)
Thay vào điều kiện \(a^2+b^2+c^2=ab+ac+bc\)ta thu được a = b = c , tam giác đều
a2+b2+c2=ab+bc+ca
<=> a2+b2+c2-ab-bc-ca=0
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
(a-b)2+(b-c)2+(c-a)2=0
=>a=b=c
=> tam giác đó đều