Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 1 2 1 2 1 2
Mình vẽ hình hơi xấu thông cảm :
- Có AB // CD (gt)
=> góc I2 = góc C2 (sole trong)
mà C2 = góc C1 (CI là phân giác góc C - gt)
=> góc I2 = góc C1
=> tam giác IBC cân tại B
=> IB = BC (1)
- AB // CD (gt)
=> góc I1 = góc D2
mà góc D1 = góc D2 (DI là phân giác góc D - gt)
=> góc I1 = góc D1
=> Tam giác AID cân tại A
=> IA = AD (2)
Từ (1) và (2)
=> IA + IB = BC + AD
=> AB = BC + AD
=> AB bằng tổng hai cạnh bên (Đpcm)
Ta có : \(\tan A+\tan C=2\tan B\)
\(\Rightarrow\frac{\sin A}{\cos A}+\frac{\sin C}{\cos C}=2\frac{\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin A\cos C+\sin C\cos A}{\cos A\cos C}=\frac{2\sin B}{\cos C}\)
\(\Rightarrow\frac{\sin\left(A+C\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin\left(180-II\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\frac{\sin\left(B\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)
\(\Rightarrow\cos B=2\cos A\cos C\)
\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=2\frac{b^2+c^2-a^2}{2bc}.\frac{a^2+b^2-c^2}{2ab}\)
\(\Rightarrow3c^2-2b^2=\frac{\left(2b^2-c^2\right)c^2}{b^2}\)
\(\Rightarrow2b^4-b^2c^2-c^4=0\)
\(\Rightarrow\left(b^2-c^2\right)\left(2b^2+c^2\right)=0\)
\(\Rightarrow b=c\)
Thay vào điều kiện \(a^2+b^2+c^2=ab+ac+bc\)ta thu được a = b = c , tam giác đều
a2+b2+c2=ab+bc+ca
<=> a2+b2+c2-ab-bc-ca=0
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
(a-b)2+(b-c)2+(c-a)2=0
=>a=b=c
=> tam giác đó đều
- Nguyễn Huy Tú1505GP
- Ace Legona1252GP
- soyeon_Tiểubàng giải850GP
- Trần Việt Linh739GP
- Hoàng Lê Bảo Ngọc688GP
- Võ Đông Anh Tuấn657GP
- Phương An650GP
- Silver bullet592GP
- Tuấn Anh Phan Nguyễn464GP
- Hoàng Ngọc Anh
a) Gọi E' là điểm đối xứng với E qua A.
Khi đó ta thấy ngay MA là đường trung bình của tam giác EE'H
Vậy nên MA // HE'.
Kéo dài MA, cắt BC tại K.
Ta thấy rằng \(\widehat{BAC}=\widehat{E'AH}\) (Cùng phụ với góc CAE')
Vậy nên ta có ngay \(\Delta ABC=\Delta AE'H\left(c-g-c\right)\Rightarrow\widehat{AE'H}=\widehat{ABC}\)
Lại có \(\widehat{AE'H}=\widehat{E'AK}\) (Hai góc so le trong)
\(\widehat{E'AK}=\widehat{MAE}\) (Hai góc đổi đỉnh)
Vậy nên \(\widehat{ABC}=\widehat{MAE}\)
Suy ra \(\widehat{ABK}+\widehat{BAK}=\widehat{MAE}+\widehat{BAK}=180^o-\widehat{EAB}=90^o\)
Xét tam giác ABK có \(\widehat{ABK}+\widehat{BAK}=90^o\) nên \(\widehat{AKB}=90^o\Rightarrow MA\perp BC\left(đpcm\right)\)
b) +) Ta có \(MA\perp BC;ON\perp BC\Rightarrow\) MA // ON.
Chứng minh tương tự ta cũng có \(NA\perp EH\)
Khi OE = OH thì tam giác OEH cân tại O, suy ra OM là trung tuyến đồng thời đường cao. Vậy \(OM\perp EH\Rightarrow\) OM // NA
Vậy thì AMON là hình bình hành.
+) Ta có AMON là hình bình hành nên AM = ON.
Lại có \(AM=\dfrac{HE'}{2}=\dfrac{BC}{2}=BN=NC\)
Nên \(NO=NB=NC\Rightarrow\widehat{BOC}=90^o\)
Vậy thì \(\widehat{B_1}=\widehat{C_1}=45^o\)
Ta có \(\widehat{BAC}+\widehat{B_2}+\widehat{B_1}+\widehat{C_2}+\widehat{C_1}=180^o\)
Mà do OA = OB = OC nên \(\widehat{B_2}=\widehat{BAO};\widehat{C_2}=\widehat{OAC}\Rightarrow\widehat{B_2}+\widehat{C_2}=\widehat{BAC}\)
Suy ra \(2\widehat{BAC}=90^o\Rightarrow\widehat{BAC}=45^o\)
a) x(5x - 3) - x2(x - 1) + x(x2 - 6x) - 10 + 3x
=5x2-3x-x3+x2+x3-6x2-10+3x
=(5x2-6x2+x2)+(-3x+3x)-(x3-x3)-10
=-10
b) x(x2+ x + 1) - x2(x +1) - x +5
=x3+x2+x-x3-x2-x+5
=(x3-x3)+(x2-x2)+(x-x)+5
=5
HEA = EAF = AFH = 900
=> AEHF là hình chữ nhật
=> AF = EH
mà AF = FK (gt)
=> EH = FK
mà EH // FK (AEHF là hình chữ nhật)
=> EHKF là hình bình hành
O là trung điểm của AH (AEHF là hình chữ nhật)
I là trung điểm của FH (EHKF là hình bình hành)
=> OI là đường trung bình của tam giác HAF
=> OI // AC
a2 + b2 + c= ab + ac + bc
=> 2a2 + 2b2 + 2c2= 2ab + 2ac + 2bc
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2)=0
=> ( a - b)2 + ( a - c)2 + ( b - c)2 =0
Vì ( a - b)2 >= 0
( a - c)2>= 0
( b - c)2>=0
=> Để ( a - b)2 + ( a - c)2 + ( b - c)2 =0 thì a - b =0 ; a - c=0; b-c=0
=> a=b=c
=> Tam giác đó là tam giác đều