K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

a2 + b2 + c= ab + ac + bc

=> 2a2 + 2b2 + 2c2= 2ab + 2ac + 2bc

=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2)=0

=> ( a - b)2 + ( a - c)2 + ( b - c)2 =0

Vì ( a - b)>= 0

    ( a - c)2>= 0

    ( b - c)2>=0

=> Để  ( a - b)2 + ( a - c)2 + ( b - c)2 =0 thì a - b =0 ; a - c=0; b-c=0

=> a=b=c

=> Tam giác đó là tam giác đều

17 tháng 9 2016

A B C D 1 2 1 2 1 2

Mình vẽ hình hơi xấu thông cảm :

- Có AB // CD (gt)

=> góc I2 = góc C2 (sole trong) 

mà C2 = góc C1 (CI là phân giác góc C - gt)

=> góc I2 = góc C1

=> tam giác IBC cân tại B

=> IB = BC (1)

- AB // CD (gt)

=> góc I1 = góc D2

mà góc D1 = góc D2 (DI là phân giác góc D - gt)

=> góc I1 = góc D1

=> Tam giác AID cân tại A

=> IA = AD (2)

Từ (1) và (2)

=> IA + IB = BC + AD

=> AB = BC + AD

=> AB bằng tổng hai cạnh bên (Đpcm)

20 tháng 9 2017

Ta có : \(\tan A+\tan C=2\tan B\)

\(\Rightarrow\frac{\sin A}{\cos A}+\frac{\sin C}{\cos C}=2\frac{\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin A\cos C+\sin C\cos A}{\cos A\cos C}=\frac{2\sin B}{\cos C}\)

\(\Rightarrow\frac{\sin\left(A+C\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin\left(180-II\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin\left(B\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\cos B=2\cos A\cos C\)

\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=2\frac{b^2+c^2-a^2}{2bc}.\frac{a^2+b^2-c^2}{2ab}\)

\(\Rightarrow3c^2-2b^2=\frac{\left(2b^2-c^2\right)c^2}{b^2}\)

\(\Rightarrow2b^4-b^2c^2-c^4=0\)

\(\Rightarrow\left(b^2-c^2\right)\left(2b^2+c^2\right)=0\)

\(\Rightarrow b=c\)

Thay vào điều kiện \(a^2+b^2+c^2=ab+ac+bc\)ta thu được a = b = c , tam giác đều

25 tháng 7 2016

a2+b2+c2=ab+bc+ca 

<=> a2+b2+c2-ab-bc-ca=0

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c 

=> tam giác đó đều

15 tháng 7 2017
  • Nguyễn Huy Tú1505GP
  • Ace Legona1252GP
  • soyeon_Tiểubàng giải850GP
  • Trần Việt Linh739GP
  • Hoàng Lê Bảo Ngọc688GP
  • Võ Đông Anh Tuấn657GP
  • Phương An650GP
  • Silver bullet592GP
  • Tuấn Anh Phan Nguyễn464GP
  • Hoàng Ngọc Anh
19 tháng 12 2017

Hình học lớp 8

a) Gọi E' là điểm đối xứng với E qua A.

Khi đó ta thấy ngay MA là đường trung bình của tam giác EE'H

Vậy nên MA // HE'.

Kéo dài MA, cắt BC tại K.

Ta thấy rằng \(\widehat{BAC}=\widehat{E'AH}\) (Cùng phụ với góc CAE')

Vậy nên ta có ngay \(\Delta ABC=\Delta AE'H\left(c-g-c\right)\Rightarrow\widehat{AE'H}=\widehat{ABC}\)

Lại có \(\widehat{AE'H}=\widehat{E'AK}\) (Hai góc so le trong)

\(\widehat{E'AK}=\widehat{MAE}\) (Hai góc đổi đỉnh)

Vậy nên \(\widehat{ABC}=\widehat{MAE}\)

Suy ra \(\widehat{ABK}+\widehat{BAK}=\widehat{MAE}+\widehat{BAK}=180^o-\widehat{EAB}=90^o\)

Xét tam giác ABK có \(\widehat{ABK}+\widehat{BAK}=90^o\) nên \(\widehat{AKB}=90^o\Rightarrow MA\perp BC\left(đpcm\right)\)

b) +) Ta có \(MA\perp BC;ON\perp BC\Rightarrow\) MA // ON.

Chứng minh tương tự ta cũng có \(NA\perp EH\)

Khi OE = OH thì tam giác OEH cân tại O, suy ra OM là trung tuyến đồng thời đường cao. Vậy \(OM\perp EH\Rightarrow\) OM // NA

Vậy thì AMON là hình bình hành.

+) Ta có AMON là hình bình hành nên AM = ON.

Lại có \(AM=\dfrac{HE'}{2}=\dfrac{BC}{2}=BN=NC\)

Nên \(NO=NB=NC\Rightarrow\widehat{BOC}=90^o\)

Vậy thì \(\widehat{B_1}=\widehat{C_1}=45^o\)

Ta có \(\widehat{BAC}+\widehat{B_2}+\widehat{B_1}+\widehat{C_2}+\widehat{C_1}=180^o\)

Mà do OA = OB = OC nên \(\widehat{B_2}=\widehat{BAO};\widehat{C_2}=\widehat{OAC}\Rightarrow\widehat{B_2}+\widehat{C_2}=\widehat{BAC}\)

Suy ra \(2\widehat{BAC}=90^o\Rightarrow\widehat{BAC}=45^o\)

15 tháng 8 2016

a) x(5x - 3) - x2(x - 1) + x(x2 - 6x) - 10 + 3x

=5x2-3x-x3+x2+x3-6x2-10+3x

=(5x2-6x2+x2)+(-3x+3x)-(x3-x3)-10

=-10

b) x(x2+ x + 1) - x2(x +1) - x +5

=x3+x2+x-x3-x2-x+5

=(x3-x3)+(x2-x2)+(x-x)+5

=5

 

 

 

 

22 tháng 8 2017

Em cam on!

8 tháng 12 2016

HEA = EAF = AFH = 900

=> AEHF là hình chữ nhật

=> AF = EH

mà AF = FK (gt)

=> EH = FK

mà EH // FK (AEHF là hình chữ nhật)

=> EHKF là hình bình hành

O là trung điểm của AH (AEHF là hình chữ nhật)

I là trung điểm của FH (EHKF là hình bình hành)

=> OI là đường trung bình của tam giác HAF

=> OI // AC