Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi nghiệm chung phương trình là x2
Phương trình x2 + ax + b = 0 có nghiệm
\(x_1+x_2=-a;x_1.x_2=b\)
Tương tự với phương trình x2 + cx + d = 0
=> \(x_3+x_2=-c;x_2.x_3=d\)
Khi đó b - d = x2(x1 - x3)
a - c = x3 - x1
ad - bc = -(x1 + x2).x2.x3 + x1.x2(x3 + x2) = \(x_2^2\left(x_1-x_3\right)\)
Khi đó P = (b - d)2 + (a - c)(ad - bc)
= \(\left[x_2\left(x_1-x_3\right)\right]^2-\left(x_1-x_3\right)x_2^2\left(x_1-x_3\right)=0\)(đpcm)
Theo vi ét:
\(\hept{\begin{cases}a_1a_2=1\\a_1+a_2=-p\end{cases}}\) và \(\hept{\begin{cases}b_1b_2=1\\b_1+b_2=-q\end{cases}}\)
Ta có: \(\left(a_1-b_1\right)\left(a_2-b_1\right)\left(a_1+b_2\right)\left(a_2+b_2\right)\)
\(=\left(a_1a_2+b_1^2-a_1b_1-a_2b_1\right)\left(a_1a_2+a_2b_2+b_2^2+a_1b_2\right)\)
\(=\left(1+b_1^2+pb_1\right)\left(1+b_2^2-pb_2\right)\)
\(=1+b_2^2-pb_2+b_1^2+b_1^2b_2^2-pb_1^2b_2+pb_1+pb_1b_2^2-p^2b_1b_2\)
= \(1+b_1^2+b_2^2-pb_2-pb_1+1+pb_1+pb_2-p^2\)
\(=2+\left(b_1+b_2\right)^2-2b_1b_2-p^2\)
\(=q^2-p^2\)
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm