Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta phải có n2+n+1 là ước của 3 mà n2+n+1 >0 nên n2+n+1=1 hoặc n2+n+1=3 nên n2+n=0 hoặc n2+n=2 tự giải tiếp nhé
Phần (2) bạn làm sai rồi ❌:
Theo mk thì là thế này:
Để a nguyên thì 3n+9 chia hết cho n-4
=>3(n-4)+12+9 chia hết cho n-4
=>3(n-4)+21 chia hết cho n-4
=>21chia hết cho n-4 (vì 3(n-4) chi
=>21 chia hết cho n-4(vì 3(n-4) chia hết cho n-4)
=>n-4 € Ư(21)
=> n-4 € {1;3;7;21;-1;-3;-7;-21}
=>n € {5;7;11;25;3;1;-3;-25}
Bạn tự thử lại xem thế nào nha😉
Bài làm của bạn cũng ra kết quả đúng nhưng mk ko biết cách làm của bạn 😇
Tại hồi nãy mk nhấn nhầm xin lỗi nha😓
\(N=3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow N=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(\Rightarrow N=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(\Rightarrow N=\left[3^n\left(3^2+1\right)\right]-\left[2^{n-1}\left(2^3+2\right)\right]\)
\(\Rightarrow N=3^n.10-2^{n-1}.10\)
\(\Rightarrow N=\left(3^n-2^{n-1}\right).10⋮10\)
\(\Rightarrow N⋮10\left(đpcm\right)\)
Vậy \(N⋮10\)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)
3n+2-2n+2+3n-2n
=(3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1) chia hết cho 10
Vậy 3n+2-2n+2+3n-2n chia hết cho 10
C1: Đặt tính chia ra:
\(\left(n^3-3n^2-1\right):\left(n^2+n+1\right)\)
C2: Dùng quy nạp
Giả sử n=k, chứng minh đúng với k+1