Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
\(=\left(m+5\right)^2-n^2=\left(m-n+5\right)\left(m+n+5\right)\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
\(m^2+n^2+2\ge2\left(m+n\right)\\ \Leftrightarrow\left(m^2+2m+1\right)+\left(n^2+2n+1\right)\ge0\\ \Leftrightarrow\left(m+1\right)^2+\left(n+1\right)^2\ge0\forall m,n\)
Nếu m hoặc n chia hết cho 3 thì hiển nhiên \(nm\left(m^2-n^2\right)⋮3\)
Nếu cả m và n đều không chia hết cho 3 thì \(m^2,n^2\) đều chia 3 dư 1 (tính chất của số chính phương). Do đó \(m^2-n^2⋮3\) nên \(mn\left(m^2-n^2\right)⋮3\)
Vậy \(mn\left(m^2-n^2\right)⋮3\) với mọi cặp số nguyên m, n.
Ta có:
\(mn\left(m^2-n^2\right)\)
\(=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)
\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
\(=mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)\)
\(=n\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\)
Ta thấy:
\(n\left(m-1\right)m\left(m+1\right)⋮6\) ( Vì ( m - 1 )m( m + 1 ) là tích của 3 số tự nhiên liên tiếp
Và \(m\left(n-1\right)n\left(n+1\right)⋮6\) ( Vì ( n - 1 )n( n + 1) là tích của 3 số tự nhiên liên tiếp )
\(\Rightarrow n\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)⋮6\)
Vậy \(mn\left(m^2-n^2\right)⋮6\)