Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dat m = 3k + r voi 0 \(\le\)r \(\le\) 2 va n = 3t + s
=> xm + xn + 1 = x3k + r + x3t +s + 1 = x3k. xr - xr + x3t . xs - xs + xr + xs +1
= xr ( x3t -1) + xs ( x3t - 1) + xr + xs + 1
ta thay: x3k-1 \(⋮\) \(\left(x^2+x+1\right)\)va \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)
vay \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)voi \(0\le r;s\le2\)
\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)
\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)
\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)
\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)
\(\Rightarrow\left(mn-2\right)⋮3\)
ap dung: \(m=7;n=2;\Rightarrow mn-2=12⋮3\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
⇒xm+xn+1=x3k+r+x3t+s+1=x3k.xr−xr+x3t.xs−xs+xr+xs+1
=xr(x3t−1)+xs(x3t−1)+xr+xs+1
Ta thấy: (x3k−1)chia hết (x2+x+1)và (x3t−1) chia hết (x2+x+1)
Vậy: (xm+xn+1)chia hết (x2+x+1)
⇔(xr+xs+1)chia hết (x2+x+1)với 0≤r;s≤2
⇔r=2;x=1⇒m=3k+2;n=3t+1
r=1;s=2⇒m=3k+1;n=3t+2
⇔mn−2=(3k+2)(3t+1)−2=9kt+3k+6t=3(3kt+k+2t)
mn−2=(3k+1)(3t+2)−2=9kt+6k+3t=3(3kt+2k+t)
⇒mn−2chia hết cho 3.
Áp dụng:m=7;n=2⇒mn−2=12chia hết cho 3
⇒(x7+x2+1) chia hết cho (x2+x+1)
\(\left(mn-2\right)⋮3\Rightarrow mn\) chia cho 3 dư 2
Đặt \(m=3k+r;n=3p+q\left(p;q;r;k\in N;r\ne q;1\le r;q\le2\right)\)
Vì m;n bình đẳng nên giả sử \(m\ge n\) \(\Rightarrow r\ge q\Rightarrow r=1;q=2\)
Ta có : \(x^m+x^n+1=x^{3k+1}+x^{3p+2}+1\)
\(=\left(x^{3k+1}-x\right)+\left(x^{3p+2}-x^2\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)\)
Ta thấy \(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)⋮x^3-1⋮x^2+x+1\)
\(\Rightarrow\)\(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Hay \(x^m+x^n+1⋮x^2+x+1\)
moi hok lop 6 @gmail.com