K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

a) \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)

\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)

\(=\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m\)

Vì tích 3 số nguyên liên tiếp luôn chia hết cho 3 nên \(\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)⋮3\\\left(n-1\right)n\left(n+1\right)⋮3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)n⋮3\\\left(n-1\right)n\left(n+1\right)m⋮3\end{cases}}\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m⋮3\)

Vậy \(mn\left(m^2-n^2\right)⋮3\left(đpcm\right)\)

30 tháng 8 2019

b) \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(n+2+n-1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)

Vì tích 3 số nguyên liên tiếp thì chia hết cho 3 và có ít nhất 1 số chẵn nên chia hết cho 6

\(\Rightarrow\hept{\begin{cases}n\left(n+1\right)\left(n+2\right)⋮6\\\left(n-1\right)n\left(n+1\right)⋮6\end{cases}}\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\left(đpcm\right)\)

17 tháng 11 2022

b: 9^2n có chữ số tận cùng là 1

=>9^2n+14 có chữ số tận cùng là 5

=>9^2n+14 chia hết cho 5

c: n(n^2+1)(n^2+4)

=n(n-2)(n-1)(n+1)(n+2)+10n^3

Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp

nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5

=>n(n^2+1)(n^2+4) chia hết cho 5

 

13 tháng 1 2019

n thuộc N

a) TH1: n chia hết cho 3 => n.(n2+1).(n2+2) chia chết cho 3

TH2: n chia 3 dư 1 => n=3k+1=> n2+2 =(3k+1)2+2=9k2+6k+3 chia hết cho 3

TH3: n chia 3 dư 2 => n=3k+2 => n2+2=(3k+2)2+2=9k2+12k+6 chia hết cho 3

=> đpcm

24 tháng 1 2018

Hỏi đáp Toán

24 tháng 1 2018

Hỏi đáp Toán

5 tháng 11 2018

\(9^{2n}+14\)

92n = 81n có chữ số tận cùng là 1

14 có chữ số tận cùng là 4

=> \(9^{2n}+14\) có chữ số tận cùng là 5 

=> \(9^{2n}+14\) chia hết cho 5 (đpcm)

14 tháng 10 2022

b: =>n^2+4n-2n-8+14 chia hết cho n+4

=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)

c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)

=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)

\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)