K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 11 2022
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
14 tháng 10 2022
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)
a) \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)
\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
\(=\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 3 nên \(\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)⋮3\\\left(n-1\right)n\left(n+1\right)⋮3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)n⋮3\\\left(n-1\right)n\left(n+1\right)m⋮3\end{cases}}\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m⋮3\)
Vậy \(mn\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
b) \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(n+2+n-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Vì tích 3 số nguyên liên tiếp thì chia hết cho 3 và có ít nhất 1 số chẵn nên chia hết cho 6
\(\Rightarrow\hept{\begin{cases}n\left(n+1\right)\left(n+2\right)⋮6\\\left(n-1\right)n\left(n+1\right)⋮6\end{cases}}\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\left(đpcm\right)\)