K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Vì a,b,c,d,m,n thuộc Z   và  a < b < c < d < m < n nên ta có : 

                          a + b < 2a ( 1 )

                         c + d < 2c   (2)

                         m + n < 2m ( 3)

Cộng vế với vế các bđt (1), (2) và (3) ta được :  a + b + c + d + m + n > 2 ( a + c  + m )

                                                                                 => \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)

                                                                                =>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\)   ( đpcm ) 

8 tháng 6 2016

xin lỗi mình đánh nhầm dấu ">" thành "<"  mình xin đính chính lại nhé : a + c > 2a (1 )

                                                                                                                               c + d > 2c  (2)

                                                                                                                             m + n > 2m ( 3)

có chút sai xót chỗ này thành thật xin lỗi !

a,

b,  a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

24 tháng 6 2019

Vì \(b,d>0\)nên \(bd>0\)

Ta có:  \(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow ad< bc\)vì \(bd>0\)

8 tháng 6 2016

a < b => 2a < a + b

c < d => 2c < c + d

m < n => 2m < m + n

=> 2(a + c + m) < a + b + c + d + m + n

=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\) 

=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

 

8 tháng 6 2016

Phân số có tử bé hơn mẫu thì bé hơn 1

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

9 tháng 8 2017

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad>bc\Leftrightarrow ad+dc>bc+dc\Leftrightarrow d\left(a+c\right)>c\left(b+d\right)\)

<=>\(\frac{d\left(a+c\right)}{d\left(b+d\right)}>\frac{c\left(b+d\right)}{d\left(b+d\right)}\)(do b,d>0)<=>\(\frac{a+c}{b+d}>\frac{c}{d}>\frac{a}{b}\)

ta có đpcm.

9 tháng 8 2017

???????????????

9 tháng 8 2017

Có:a/b<c/d

   =>ad<cb

   =>ad+ab<cb+ab

   =>a(b+d)<b(a+c)

   =>a/b<a+c/b+d(đpcm)