K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2020

Ta có: \(a,b,c,d\in N^{\times}\)nên:

\(\Rightarrow a+b+c< a+b+c+d\)

\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Lại có: \(a,b,c,d\in N^{\times}\) nên:

\(\Rightarrow a+b+c>a+b\)

\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)

Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)

Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.

7 tháng 4 2017

Thay \(a+b+c\) vào \(A\) ta được:

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

Ta có:

\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế ta được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế ta lại được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Vậy \(A\) không phải là số nguyên (Đpcm)

7 tháng 4 2017

cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui 

Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\) 

suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)

=> A > 1

28 tháng 3 2021

F(0)=d⇒d⋮5F(0)=d⇒d⋮5

F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5

F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5

⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5

⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5

⇒a+c⋮5

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5

theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5