K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MH
19 tháng 9 2021
Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb
ĐKĐB ⇔\(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)
⇔\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)
⇔\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)
Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ.
Mà √22 là số vô tỉ (đây là bài toán quen thuộc)
Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.
G
2
10 tháng 6 2021
gấu koala có avata chim cánh cụt
vô tay
TN
13 tháng 6 2017
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
Lời giải:
Giả sử tồn tại $a,b\in\mathbb{Z}$ thỏa mãn ycđb
ĐKĐB $\Leftrightarrow a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}$
$\Leftrightarrow (a^2+2b^2-2004)=\sqrt{2}(2003-2ab)$
$\Leftrightarrow \sqrt{2}=\frac{a^2+2b^2-2004}{2003-2ab}(*)$
Với $a,b$ nguyên thì $\frac{a^2+2b^2-2004}{2003-2ab}$ là số hữu tỉ.
Mà $\sqrt{2}$ là số vô tỉ (đây là bài toán quen thuộc)
Do đó $(*)$ vô lý, hay điều giả sử là sai, tức là không tồn tại $a,b\in\mathbb{Z}$ thỏa mãn đkđb.