\(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+....+\frac{1}{99^2}< \frac{3}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

 Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)

Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)

Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< \frac{3}{4}\)

\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)

15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha

13 tháng 5 2020

a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)

\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)

\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)

b)  Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(3C=2C+C=1-\frac{1}{64}< 1\)

\(C< \frac{1}{3}\)

d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e)  \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
                                                    \(=\frac{10}{50}=\frac{1}{5}\)

Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)

\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

27 tháng 4 2018

Gọi tổng trên là A

=>A>\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\) =\(\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{99}{200}\)(đpcm)

27 tháng 4 2018

\(\frac{99}{202}< \frac{99}{200}\)xem lại 

19 tháng 3 2016

a)

\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^6}=A\)

2A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}\)

2A + A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^6}\)

     3A  = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)(đpcm)