\(\forall n\inℕ^∗\)thì \(3^n+2003\)không chia hết cho 31...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N

18 tháng 1 2017

Ta có: n2+n+2=n(n+1)+2

Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.

Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.

Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).

Vậy số trên không chia hết cho 15.

21 tháng 1 2020

A = 4n + 4n + 16 = 2.4n + 16

Có 4 đồng dư với 1 (mod 3)

=> 4n đồng dư với 1(mod 3)

=> 2.4n đồng dư với 2(mod 3)

Mà 16 đồng dư với 1(mod 3)

=> 2.4n + 16 đồng dư với 1+2=3(mod 3)

Hay A chia hết cho 3 với mọi số nguyên dương n

21 tháng 1 2020

bạn ơi

\(2^{2^n}\)sao bằng \(4^n\)được hả bạn

27 tháng 9 2020

Ta có: 2S=n(n+1)

Áp dụng tính chất: \(a^n+b^n⋮a+b\)với a, b là các số nguyên dương và n lẻ, ta có:

\(2T=\left(1^5+n^5\right)+\text{[}2^5+\left(n-1\right)^5\text{]}+...+\left(n^5+1^5\right)⋮\left(n+1\right)\)

Tương tự \(2T⋮n\)

Mà \(\left(n.n+1\right)=1\Rightarrow2T⋮n\left(n+1\right)hayT⋮S\)

Tổng quát:

Có thể chứng minh được:

\(A\left(k.n\right)=1^k+2^k+...+n^k⋮T\left(n\right)=1+2+3+...+n\forall n,k\in N;n\ge1\)và k lẻ

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
29 tháng 8 2020

Với \(n=1\) thì đề sai, mà hình như với số nào đề cũng sai...

\(52^n+33=\left(52^n-1\right)+34\)

\(=\left(52-1\right)\times\left(52^{n-1}+52^{n-2}\times1+...+52\times1^{n-2}+b^{n-1}\right)+17\times2\)

\(=51\times\left(52^{n-1}+52^{n-2}\times1+...+52\times1^{n-2}+1^{n-1}\right)+17\times2\)

\(=17\times3\times\left(52^{n-1}+52^{n-2}\times1+...+52\times1^{n-2}+1^{n-1}\right)+17\times2⋮17\)

\(\Rightarrow52^n+33⋮17\left(ĐPCM\right)\)

Học tốt

20 tháng 6 2019

BẠN HỌC LỚP 8B THCS PHAN BỘI CHÂU TỨ KỲ ĐÚNG KO