Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N
Ta có: n2+n+2=n(n+1)+2
Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.
Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.
Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).
Vậy số trên không chia hết cho 15.
Ta có: \(n\in Z^+\)
\(\Rightarrow2^nchẵn\)
\(\Rightarrow2^{2^n}\equiv\left(-1\right)^{2^n}\equiv1\left(mod3\right)\)
\(4^n\equiv1^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16\equiv1+1+1\equiv3\equiv0\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16⋮3\left(đpcm\right)\)
A = 4n + 4n + 16 = 2.4n + 16
Có 4 đồng dư với 1 (mod 3)
=> 4n đồng dư với 1(mod 3)
=> 2.4n đồng dư với 2(mod 3)
Mà 16 đồng dư với 1(mod 3)
=> 2.4n + 16 đồng dư với 1+2=3(mod 3)
Hay A chia hết cho 3 với mọi số nguyên dương n
bạn ơi
\(2^{2^n}\)sao bằng \(4^n\)được hả bạn