K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

A = 4n + 4n + 16 = 2.4n + 16

Có 4 đồng dư với 1 (mod 3)

=> 4n đồng dư với 1(mod 3)

=> 2.4n đồng dư với 2(mod 3)

Mà 16 đồng dư với 1(mod 3)

=> 2.4n + 16 đồng dư với 1+2=3(mod 3)

Hay A chia hết cho 3 với mọi số nguyên dương n

21 tháng 1 2020

bạn ơi

\(2^{2^n}\)sao bằng \(4^n\)được hả bạn

20 tháng 11 2019

Ta có: \(n\in Z^+\)

\(\Rightarrow2^nchẵn\)

\(\Rightarrow2^{2^n}\equiv\left(-1\right)^{2^n}\equiv1\left(mod3\right)\)

\(4^n\equiv1^n\equiv1\left(mod3\right)\)

\(16\equiv1\left(mod3\right)\)

\(\Rightarrow2^{2^n}+4^n+16\equiv1+1+1\equiv3\equiv0\left(mod3\right)\)

\(\Rightarrow2^{2^n}+4^n+16⋮3\left(đpcm\right)\)

18 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N

18 tháng 1 2017

Ta có: n2+n+2=n(n+1)+2

Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.

Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.

Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).

Vậy số trên không chia hết cho 15.

NV
15 tháng 4 2019

\(n=2k+1\)

\(\Rightarrow A=1+2.4^k+3.9^k+4.16^k+5.25^k\)

- Ta có: \(4\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2mod\left(3\right)\)

\(16\equiv1\left(mod3\right)\Rightarrow4.16^k\equiv1\left(mod3\right)\)

\(25\equiv1\left(mod3\right)\Rightarrow5.25^k\equiv2\left(mod3\right)\)

\(\Rightarrow A\equiv\left(1+2+1+2\right)\left(mod3\right)\Rightarrow A⋮3\)

Tương tự ta có:

\(A\equiv\left(1+-2-3+4\right)\left(mod5\right)\Rightarrow A⋮5\)

Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮15\)

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

30 tháng 9 2018

sử dụng tính chất \(a^n+b^n⋮\left(a+b\right)\)vs n lẻ

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0