\(a,-x^2+6x-16\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a) \(-x^2+6x-16=-\left(x^2-6x+9\right)-7=-\left(x-3\right)^2-7< 0\)

b) \(-5x^2+20x-49=-5\left(x^2-4x+4\right)-29=-5\left(x-2\right)^2-29< 0\)

c) \(-1+x-x^2=-\left(x^2-x+1\right)=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)

19 tháng 6 2018

\(a,-x^2+6x-16\)

\(=-x^2+3x+3x-9-5\)

\(=-x\left(x-3\right)+3\left(x-3\right)-5\)

\(=\left(3-x\right)\left(x-3\right)-5\)

\(=-\left(x-3\right)^2-5\le-5\)=>Luôn âm

\(c,-1+x-x^2\)

\(=-x^2+x-1\)

\(=-\left(x^2-x+\frac{1}{2}+\frac{1}{2}\right)\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\le\frac{-1}{2}\)=>Luôn âm

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

19 tháng 6 2018

a,\(-\left(x^2-3x+4\right)\)

   \(-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)(luôn âm)

b\(-2\left(x^2-5x+\frac{15}{2}\right)\)

\(-2\left[\left(x-\frac{5}{2}\right)^2+\frac{5}{4}\right]\)

\(-2\left(x-\frac{5}{4}\right)^2-\frac{5}{2}\le-\frac{5}{2}\)(luôn âm)

19 tháng 6 2018

c,\(-\left[\left(4x^2-4x+1\right)+\left(2y^2-6y+5\right)\right]\)

 \(=-\left[\left(2x-1\right)^2+2\left(y^2-3y+\frac{5}{2}\right)\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2+\frac{1}{4}\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2\right]-\frac{1}{4}\le-\frac{1}{4}\)(luôn âm)

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

20 tháng 6 2018

a) \(2x^2-4x+10=2\left(x^2-2x+1\right)+8=2\left(x-1\right)^2+8>0\)

b) \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c) \(2x^2-6x+5=2\left(x^2-3x+\dfrac{9}{4}\right)+1,5=2\left(x-\dfrac{3}{2}\right)^2+1,5>0\)

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

DD
1 tháng 8 2021

a) \(A=x-x^2-10=-\left(x^2-x+\frac{1}{4}\right)-\frac{39}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{39}{4}\le-\frac{39}{4}\)với mọi \(x\).

b) \(B=-x^2-2y^2+2xy-2x+10y-40\)

\(=-x^2-y^2-1+2xy-2x+2y-y^2+8y-16-24\)

\(=-\left(x-y+1\right)^2-\left(y-4\right)^2-24\le-24\)với mọi \(x,y\).