\(x-x^2-10\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

a) \(A=x-x^2-10=-\left(x^2-x+\frac{1}{4}\right)-\frac{39}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{39}{4}\le-\frac{39}{4}\)với mọi \(x\).

b) \(B=-x^2-2y^2+2xy-2x+10y-40\)

\(=-x^2-y^2-1+2xy-2x+2y-y^2+8y-16-24\)

\(=-\left(x-y+1\right)^2-\left(y-4\right)^2-24\le-24\)với mọi \(x,y\).

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

19 tháng 6 2018

a,\(-\left(x^2-3x+4\right)\)

   \(-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)(luôn âm)

b\(-2\left(x^2-5x+\frac{15}{2}\right)\)

\(-2\left[\left(x-\frac{5}{2}\right)^2+\frac{5}{4}\right]\)

\(-2\left(x-\frac{5}{4}\right)^2-\frac{5}{2}\le-\frac{5}{2}\)(luôn âm)

19 tháng 6 2018

c,\(-\left[\left(4x^2-4x+1\right)+\left(2y^2-6y+5\right)\right]\)

 \(=-\left[\left(2x-1\right)^2+2\left(y^2-3y+\frac{5}{2}\right)\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2+\frac{1}{4}\right]\)

\(=-\left[\left(2x-1\right)^2+2\left(y-\frac{3}{2}\right)^2\right]-\frac{1}{4}\le-\frac{1}{4}\)(luôn âm)

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

19 tháng 6 2018

\(a,-x^2+6x-16\)

\(=-x^2+3x+3x-9-5\)

\(=-x\left(x-3\right)+3\left(x-3\right)-5\)

\(=\left(3-x\right)\left(x-3\right)-5\)

\(=-\left(x-3\right)^2-5\le-5\)=>Luôn âm

\(c,-1+x-x^2\)

\(=-x^2+x-1\)

\(=-\left(x^2-x+\frac{1}{2}+\frac{1}{2}\right)\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\le\frac{-1}{2}\)=>Luôn âm

7 tháng 4 2018

A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(x2-2x+1)+2

= (x-y)2+(x-1)2 +2

do (x-y)2 ≥ 0 ∀ x,y

(x-1)2 ≥ 0 ∀ x

=> (x-y)2+(x-1)2 +2 ≥ 2

=> A ≥ 2

nimA=2 dấu "=" xảy ra khi

x-y=0

x-1=0

=> x=y=1

vậy nimA =2 khi x=y=1

23 tháng 10 2019

\(A=x^2+10x-37\)

     \(=\left(x+5\right)^2-62\) 

Có \(\left(x+5\right)^2\ge0\forall x\in R\) 

 \(\Rightarrow\left(x+5\right)^2-62\ge-62\forall x\in R\) 

Dấu = xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\) 

Vậy A đạt GTNN là -62 tại x=-5

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)