Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)
Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)
Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)
Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(A>\frac{x+y+z}{x+y+z}\)
\(A>1\left(1\right)\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)
\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)
\(A< 2\left(2\right)\)
Từ (1) và (2) => 1 < A < 2
=> A không là số nguyên (đpcm)
câu 0,5 điểm trong đề thi toán đấy. mk làm rùi nhưng ko chắc chắn lắm. các bạn làm giúp để mk so sánh bài làm nha! cảm ơn nhiều!
\(A=\left|-x-2011\right|+\left|x+2012\right|\ge\left|-x-2011+x+2012\right|=1\)
\(\Rightarrow A_{min}=1\) khi \(\left\{{}\begin{matrix}x+2011\le0\\x+2012\ge0\end{matrix}\right.\) \(\Rightarrow-2012\le x\le-2011\)
Bài 2:
\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}y-x=-z\\x-z=y\\y+z=x\end{matrix}\right.\)
\(B=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{y+z}{z}\right)=\frac{y.\left(-z\right).x}{xyz}=-1\)
Bài 3:
Gọi chiều dài 3 cạnh tương ứng là \(a,b,c\)
\(\Rightarrow4a=12b=cx\Rightarrow\left\{{}\begin{matrix}a=\frac{cx}{4}\\b=\frac{cx}{12}\end{matrix}\right.\)
Mặt khác theo BĐT tam giác ta có: \(a-b< c< a+b\)
\(\Rightarrow\frac{cx}{4}-\frac{cx}{12}< c< \frac{cx}{4}+\frac{cx}{12}\Rightarrow\frac{x}{4}-\frac{x}{12}< 1< \frac{x}{4}+\frac{x}{12}\)
\(\Rightarrow\frac{x}{6}< 1< \frac{x}{3}\) \(\Rightarrow3< x< 6\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)