\(A=\frac{x}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)

Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)

Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)

Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên

 

15 tháng 9 2016

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(A>\frac{x+y+z}{x+y+z}\)

\(A>1\left(1\right)\)

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)

\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)

\(A< 2\left(2\right)\)

Từ (1) và (2) => 1 < A < 2

=> A không là số nguyên (đpcm)

 

11 tháng 3 2017

Ta có : 

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

Do đó M ko nhận giá trị nguyên

11 tháng 3 2017

mình biết làm nhưng ghi phân  số mỏi tay quá

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

15 tháng 2 2019

ĐK:y+z+t,z+t+x,t+x+z,x+z+y khác 0

x+y+t+z khác 0

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}\)

mà x+y+z+t khác 0 nên:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}\Rightarrow x=y=z=t\)

\(\Rightarrow P=4\left(\text{nguyên}\right).\text{Vậy: P nguyên}\)

15 tháng 2 2019

@shitbo : Cơ sở đâu mà bạn cho rằng: x + y + z + t khác 0? Nếu x + y + z + t = 0 thì P = -1 ok?

21 tháng 3 2017

=2564/3=2564

    2356

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU